[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 64, 10 ]. See Glossary for some
detail.
PL(MSY( 4, 8, 3, 4)) = PL(MSY( 4, 8, 5, 4)) = AMC( 4, 8, [ 1. 1:
0. 1])
= PL(MBr( 4, 8; 3)) = UG(ATD[ 64, 22]) = UG(ATD[ 64, 23])
= UG(ATD[ 64, 24]) = MG(Rmap( 64, 6) { 4, 8| 8}_ 8) = DG(Rmap( 64, 6) {
4, 8| 8}_ 8)
= MG(Rmap( 64, 7) { 4, 8| 8}_ 8) = DG(Rmap( 64, 7) { 4, 8| 8}_ 8) =
DG(Rmap( 64, 9) { 8, 4| 8}_ 8)
= DG(Rmap( 64, 10) { 8, 4| 8}_ 8) = PL(MSY( 4, 8, 5, 4)[ 8^ 8]) = AT[
64, 12]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 1 | 0 1 | - | - |
| 2 | - | - | - | - | - | 0 3 | 0 3 | - |
| 3 | - | - | - | - | - | - | 0 1 | 0 7 |
| 4 | - | - | - | - | 0 3 | - | - | 3 6 |
| 5 | 0 7 | - | - | 0 5 | - | - | - | - |
| 6 | 0 7 | 0 5 | - | - | - | - | - | - |
| 7 | - | 0 5 | 0 7 | - | - | - | - | - |
| 8 | - | - | 0 1 | 2 5 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 7 | 0 | - | - | - | - | - | 0 |
| 2 | 0 | - | 1 | 1 | - | - | - | 1 |
| 3 | - | 7 | 3 5 | 5 | - | - | - | - |
| 4 | - | 7 | 3 | - | 5 | 5 | - | - |
| 5 | - | - | - | 3 | 1 7 | 1 | - | - |
| 6 | - | - | - | 3 | 7 | - | 1 | 7 |
| 7 | - | - | - | - | - | 7 | 3 5 | 3 |
| 8 | 0 | 7 | - | - | - | 1 | 5 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 | 0 | 0 1 | - |
| 2 | - | - | - | - | 0 | 0 | - | 0 5 |
| 3 | - | - | - | - | 1 | 7 | - | 0 5 |
| 4 | - | - | - | - | 1 | 7 | 4 5 | - |
| 5 | 0 | 0 | 7 | 7 | - | - | - | - |
| 6 | 0 | 0 | 1 | 1 | - | - | - | - |
| 7 | 0 7 | - | - | 3 4 | - | - | - | - |
| 8 | - | 0 3 | 0 3 | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 1 | 0 | - | 0 |
| 2 | - | - | - | - | 0 3 | 0 | - | 2 |
| 3 | - | - | - | - | - | 0 | 0 3 | 6 |
| 4 | - | - | - | - | - | 0 | 0 1 | 4 |
| 5 | 0 7 | 0 5 | - | - | - | - | - | - |
| 6 | 0 | 0 | 0 | 0 | - | - | - | - |
| 7 | - | - | 0 5 | 0 7 | - | - | - | - |
| 8 | 0 | 6 | 2 | 4 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 | 0 | 0 | 0 |
| 2 | - | - | - | - | 0 | 0 | 1 | 3 |
| 3 | - | - | - | - | 5 | 7 | 1 | 3 |
| 4 | - | - | - | - | 5 | 7 | 4 | 4 |
| 5 | 0 | 0 | 3 | 3 | - | - | - | - |
| 6 | 0 | 0 | 1 | 1 | - | - | - | - |
| 7 | 0 | 7 | 7 | 4 | - | - | - | - |
| 8 | 0 | 5 | 5 | 4 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 7 | 0 | - | 0 | - | - | - | - |
| 2 | 0 | - | - | 1 | 1 | 1 | - | - |
| 3 | - | - | - | - | 0 2 | 0 | - | 0 |
| 4 | 0 | 7 | - | - | 5 | - | - | 3 |
| 5 | - | 7 | 0 6 | 3 | - | - | - | - |
| 6 | - | 7 | 0 | - | - | - | 1 | 7 |
| 7 | - | - | - | - | - | 7 | 3 5 | 3 |
| 8 | - | - | 0 | 5 | - | 1 | 5 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | 0 | 0 | - | 0 | 0 | - |
| 2 | - | - | - | - | 0 | 0 2 | 0 | - |
| 3 | 0 | - | - | - | 1 | 3 | - | 1 |
| 4 | 0 | - | - | - | - | - | 7 | 1 3 |
| 5 | - | 0 | 7 | - | - | - | 3 | 7 |
| 6 | 0 | 0 6 | 5 | - | - | - | - | - |
| 7 | 0 | 0 | - | 1 | 5 | - | - | - |
| 8 | - | - | 7 | 5 7 | 1 | - | - | - |