[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 160, 35 ]. See Glossary for some
detail.
PL(LoPr_ 20( 1, 10, 6, 10, 1), [4^20, 20^4]) = PL(CS({4, 4}_ 4, 2[ 10^
4], 1)) = BGCG({4, 4}_ 6, 2; K2;{2, 3})
= BGCG({4, 4}_ 8, 4; K1;3) = BGCG(KE_20(1,7,2,15,1); K1;7) = SS[160, 12]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | - | - | - | - | 0 | 0 | - | - | - | - | 0 | - | - | 0 |
| 2 | - | - | - | - | - | - | - | - | - | - | 0 | - | 0 | - | - | 0 | - | - | - | 0 |
| 3 | - | - | - | - | - | - | - | - | - | - | - | 0 1 | - | - | - | - | 0 5 | - | - | - |
| 4 | - | - | - | - | - | - | - | - | - | - | 0 | - | - | - | 0 | - | - | 0 | - | 4 |
| 5 | - | - | - | - | - | - | - | - | - | - | 0 | - | - | 0 | - | - | - | - | 0 | 4 |
| 6 | - | - | - | - | - | - | - | - | - | - | - | - | 0 1 | - | - | 0 5 | - | - | - | - |
| 7 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | 2 | - | - | 5 | - | 6 | - |
| 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | 3 | 0 | - | - | 0 | 7 | - |
| 9 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0 | 3 | - | - | 7 | 0 | - |
| 10 | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | 6 | 5 | - | 2 | - | - |
| 11 | 0 | 0 | - | 0 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 12 | 0 | - | 0 7 | - | - | - | 7 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 13 | - | 0 | - | - | - | 0 7 | - | - | - | 7 | - | - | - | - | - | - | - | - | - | - |
| 14 | - | - | - | - | 0 | - | 6 | 5 | 0 | - | - | - | - | - | - | - | - | - | - | - |
| 15 | - | - | - | 0 | - | - | - | 0 | 5 | 2 | - | - | - | - | - | - | - | - | - | - |
| 16 | - | 0 | - | - | - | 0 3 | - | - | - | 3 | - | - | - | - | - | - | - | - | - | - |
| 17 | 0 | - | 0 3 | - | - | - | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 18 | - | - | - | 0 | - | - | - | 0 | 1 | 6 | - | - | - | - | - | - | - | - | - | - |
| 19 | - | - | - | - | 0 | - | 2 | 1 | 0 | - | - | - | - | - | - | - | - | - | - | - |
| 20 | 0 | 0 | - | 4 | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 | 0 | 0 | 0 |
| 2 | - | - | - | - | 14 | 0 | 0 | 14 |
| 3 | - | - | - | - | 1 | 0 | 10 | 11 |
| 4 | - | - | - | - | 3 | 0 | 10 | 13 |
| 5 | 0 | 6 | 19 | 17 | - | - | - | - |
| 6 | 0 | 0 | 0 | 0 | - | - | - | - |
| 7 | 0 | 0 | 10 | 10 | - | - | - | - |
| 8 | 0 | 6 | 9 | 7 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 1 | - | 0 1 | - |
| 2 | - | - | - | - | 0 | 0 | 10 | 0 |
| 3 | - | - | - | - | 0 | 14 | 10 | 14 |
| 4 | - | - | - | - | - | 10 19 | - | 0 9 |
| 5 | 0 19 | 0 | 0 | - | - | - | - | - |
| 6 | - | 0 | 6 | 1 10 | - | - | - | - |
| 7 | 0 19 | 10 | 10 | - | - | - | - | - |
| 8 | - | 0 | 6 | 0 11 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 1 | - | 0 19 | - |
| 2 | - | - | - | - | 11 | 0 | 0 | 0 |
| 3 | - | - | - | - | 11 | 6 | 0 | 6 |
| 4 | - | - | - | - | - | 10 11 | - | 0 1 |
| 5 | 0 19 | 9 | 9 | - | - | - | - | - |
| 6 | - | 0 | 14 | 9 10 | - | - | - | - |
| 7 | 0 1 | 0 | 0 | - | - | - | - | - |
| 8 | - | 0 | 14 | 0 19 | - | - | - | - |