[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 216, 28 ]. See Glossary for some
detail.
AMC( 24, 3, [ 0. 1: 2. 2]) = UG(ATD[216, 99]) = UG(ATD[216, 100])
= UG(ATD[216, 101]) = MG(Rmap(216, 43) { 6, 24| 6}_ 24) = DG(Rmap(216, 43) {
6, 24| 6}_ 24)
= MG(Rmap(216, 44) { 6, 24| 6}_ 24) = DG(Rmap(216, 44) { 6, 24| 6}_ 24) =
DG(Rmap(216, 58) { 24, 6| 6}_ 24)
= DG(Rmap(216, 59) { 24, 6| 6}_ 24) = BGCG(AMC( 12, 3, [ 0. 1: 2. 2]);
K1;3) = AT[216, 17]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
| 2 | - | - | 0 2 | - | - | 0 | - | 0 | - |
| 3 | - | 0 22 | - | - | - | 21 | - | 1 | - |
| 4 | 0 | - | - | - | 1 3 | - | - | 3 | - |
| 5 | 0 | - | - | 21 23 | - | - | - | 23 | - |
| 6 | - | 0 | 3 | - | - | - | 23 | - | 3 |
| 7 | 0 | - | - | - | - | 1 | - | - | 1 3 |
| 8 | - | 0 | 23 | 21 | 1 | - | - | - | - |
| 9 | 0 | - | - | - | - | 21 | 21 23 | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | 0 | - | 0 | - | - | 0 2 | - |
| 2 | - | - | 22 | - | 2 | - | - | - | 0 22 |
| 3 | 0 | 2 | - | 1 | - | 1 | - | - | - |
| 4 | - | - | 23 | 1 23 | - | - | 23 | - | - |
| 5 | 0 | 22 | - | - | - | - | - | 23 | 23 |
| 6 | - | - | 23 | - | - | 1 23 | 3 | - | - |
| 7 | - | - | - | 1 | - | 21 | - | 1 | 21 |
| 8 | 0 22 | - | - | - | 1 | - | 23 | - | - |
| 9 | - | 0 2 | - | - | 1 | - | 3 | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
| 2 | - | - | - | 0 | - | 0 | 0 | - | 16 |
| 3 | - | - | - | 0 | 0 | - | 16 | 8 | - |
| 4 | - | 0 | 0 | - | - | - | 1 9 | - | - |
| 5 | 0 | - | 0 | - | - | - | - | 9 17 | - |
| 6 | 0 | 0 | - | - | - | - | - | - | 1 9 |
| 7 | - | 0 | 8 | 15 23 | - | - | - | - | - |
| 8 | 0 | - | 16 | - | 7 15 | - | - | - | - |
| 9 | 0 | 8 | - | - | - | 15 23 | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
| 2 | - | - | - | 0 | - | 8 | 0 | - | 16 |
| 3 | - | - | - | 8 | 16 | - | 16 | 8 | - |
| 4 | - | 0 | 16 | - | - | - | - | 9 | 1 |
| 5 | 0 | - | 8 | - | - | - | 9 | - | 9 |
| 6 | 0 | 16 | - | - | - | - | 1 | 9 | - |
| 7 | - | 0 | 8 | - | 15 | 23 | - | - | - |
| 8 | 0 | - | 16 | 15 | - | 15 | - | - | - |
| 9 | 0 | 8 | - | 23 | 15 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | 0 | 0 | - | 0 | - | 0 | - |
| 2 | - | 1 23 | - | - | - | - | 0 | 22 | - |
| 3 | 0 | - | - | 21 | 23 | - | 21 | - | - |
| 4 | 0 | - | 3 | 1 23 | - | - | - | - | - |
| 5 | - | - | 1 | - | - | 3 | 1 | - | 1 |
| 6 | 0 | - | - | - | 21 | - | - | 21 | 1 |
| 7 | - | 0 | 3 | - | 23 | - | - | 1 | - |
| 8 | 0 | 2 | - | - | - | 3 | 23 | - | - |
| 9 | - | - | - | - | 23 | 23 | - | - | 1 23 |