[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 228, 7 ]. See Glossary for some
detail.
PS( 6, 76; 7) = PS( 6, 76; 11) = MPS( 6, 76; 27)
= MPS( 6, 76; 31) = MSZ ( 6, 38, 2, 7) = MSZ ( 12, 19, 5, 8)
= UG(ATD[228, 7]) = UG(ATD[228, 8]) = HC(F 38)
= MG(Cmap(228, 7) { 6, 12| 6}_ 76) = MG(Cmap(228, 8) { 6, 12| 6}_ 76) =
HC(Cmap( 57, 3) { 6, 3| 6}_ 38)
= HC(Cmap( 57, 4) { 6, 3| 6}_ 38) = HT[228, 4]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 11 | - | - | - | - | - | - | - | 0 | - | - | - | - | - | - | - | - | - | 0 |
| 2 | - | - | - | - | - | - | - | - | 0 | - | - | 0 | 0 | - | - | - | 0 | - | - |
| 3 | - | - | - | - | 0 | 0 8 | - | - | - | - | - | - | - | - | - | - | 0 | - | - |
| 4 | - | - | - | - | - | 0 | - | - | - | - | - | - | - | 0 | - | - | 2 | 0 | - |
| 5 | - | - | 0 | - | - | - | - | - | - | 7 | 7 | - | - | 7 | - | - | - | - | - |
| 6 | - | - | 0 4 | 0 | - | - | - | - | - | - | 9 | - | - | - | - | - | - | - | - |
| 7 | - | - | - | - | - | - | - | - | - | - | 10 | - | - | - | 0 | 0 | - | - | 10 |
| 8 | - | - | - | - | - | - | - | 5 7 | 2 | - | - | - | - | - | - | - | - | - | 10 |
| 9 | 0 | 0 | - | - | - | - | - | 10 | - | - | - | - | - | - | - | 9 | - | - | - |
| 10 | - | - | - | - | 5 | - | - | - | - | - | - | - | 7 | 9 | - | 5 | - | - | - |
| 11 | - | - | - | - | 5 | 3 | 2 | - | - | - | - | - | 11 | - | - | - | - | - | - |
| 12 | - | 0 | - | - | - | - | - | - | - | - | - | - | 5 | - | - | - | - | 1 | 7 |
| 13 | - | 0 | - | - | - | - | - | - | - | 5 | 1 | 7 | - | - | - | - | - | - | - |
| 14 | - | - | - | 0 | 5 | - | - | - | - | 3 | - | - | - | - | - | - | - | 9 | - |
| 15 | - | - | - | - | - | - | 0 | - | - | - | - | - | - | - | - | 1 | 9 | 11 | - |
| 16 | - | - | - | - | - | - | 0 | - | 3 | 7 | - | - | - | - | 11 | - | - | - | - |
| 17 | - | 0 | 0 | 10 | - | - | - | - | - | - | - | - | - | - | 3 | - | - | - | - |
| 18 | - | - | - | 0 | - | - | - | - | - | - | - | 11 | - | 3 | 1 | - | - | - | - |
| 19 | 0 | - | - | - | - | - | 2 | 2 | - | - | - | 5 | - | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|
| 1 | - | 0 1 | - | - | - | 0 11 |
| 2 | 0 37 | - | 0 7 | - | - | - |
| 3 | - | 0 31 | - | 23 34 | - | - |
| 4 | - | - | 4 15 | - | 24 25 | - |
| 5 | - | - | - | 13 14 | - | 2 9 |
| 6 | 0 27 | - | - | - | 29 36 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | |
|---|---|---|---|---|---|---|
| 1 | - | - | 0 | 0 | 0 | 0 |
| 2 | - | - | 0 | 24 | 32 | 30 |
| 3 | 0 | 0 | - | - | 1 | 11 |
| 4 | 0 | 14 | - | - | 19 | 7 |
| 5 | 0 | 6 | 37 | 19 | - | - |
| 6 | 0 | 8 | 27 | 31 | - | - |