C4graphConstructions for C4[ 256, 3 ] = {4,4}_[16,8]

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 256, 3 ]. See Glossary for some detail.

{4, 4}_[ 16, 8] = PS( 32, 16; 1) = PS( 32, 16; 7)

      = PS( 16, 32; 1) = PS( 16, 32; 15) = UG(ATD[256, 31])

      = UG(ATD[256, 32]) = UG(ATD[256, 33]) = MG(Rmap(256,316) { 16, 32| 2}_ 32)

      = DG(Rmap(256,316) { 16, 32| 2}_ 32) = MG(Rmap(256,327) { 16, 32| 8}_ 32) = DG(Rmap(256,327) { 16, 32| 8}_ 32)

      = DG(Rmap(256,332) { 32, 16| 2}_ 32) = DG(Rmap(256,343) { 32, 16| 8}_ 32) = AT[256, 40]

     

Cyclic coverings

mod 32:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 0 - - - 1
3 0 31 - 0 31 - - -
4 - 0 0 - 0 31 - -
5 - - 1 0 - 0 21 -
6 - - - 1 0 - 22 22
7 0 - - - 11 10 - 1
8 0 31 - - - 10 31 -

mod 32:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 0 - - - 1
3 0 31 - 0 31 - - -
4 - 0 0 - 0 31 - -
5 - - 1 0 - 0 5 -
6 - - - 1 0 - 6 6
7 0 - - - 27 26 - 1
8 0 31 - - - 26 31 -

mod 32:
12345678
1 1 31 0 2 - - - - - -
2 0 30 - 0 2 - - - - -
3 - 0 30 - 0 2 - - - -
4 - - 0 30 - 0 2 - - -
5 - - - 0 30 - 0 2 - -
6 - - - - 0 30 - 0 2 -
7 - - - - - 0 30 - 0 2
8 - - - - - - 0 30 1 31

mod 32:
12345678
1 - 0 - - 0 26 - - 0
2 0 - 0 - - 0 26 - -
3 - 0 - 0 - - 0 26 -
4 - - 0 - 1 - - 1 7
5 0 6 - - 31 - 0 - -
6 - 0 6 - - 0 - 0 -
7 - - 0 6 - - 0 - 7
8 0 - - 25 31 - - 25 -

mod 32:
12345678
1 1 31 0 - - - - - 0
2 0 1 31 0 - - - - -
3 - 0 1 31 0 - - - -
4 - - 0 1 31 0 - - -
5 - - - 0 1 31 0 - -
6 - - - - 0 1 31 0 -
7 - - - - - 0 1 31 24
8 0 - - - - - 8 1 31