C4graphGraph forms for C4 [ 256, 86 ] = UG(ATD[256,170])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 256, 86 ] = UG(ATD[256,170]).

(I) Following is a form readable by MAGMA:

g:=Graph<256|{ {30, 31}, {36, 37}, {102, 103}, {29, 31}, {185, 187}, {1, 2}, {201, 202}, {152, 155}, {1, 5}, {96, 100}, {3, 7}, {2, 6}, {243, 246}, {33, 39}, {89, 95}, {66, 68}, {41, 47}, {75, 76}, {219, 220}, {107, 108}, {152, 159}, {100, 108}, {224, 232}, {198, 206}, {112, 120}, {118, 126}, {134, 142}, {34, 43}, {4, 15}, {243, 248}, {181, 190}, {55, 60}, {4, 8}, {210, 222}, {192, 204}, {82, 94}, {81, 93}, {80, 92}, {49, 61}, {3, 14}, {65, 76}, {114, 127}, {118, 123}, {144, 157}, {166, 171}, {177, 191}, {2, 13}, {225, 238}, {33, 46}, {102, 105}, {105, 121}, {239, 255}, {162, 178}, {78, 95}, {228, 245}, {194, 211}, {166, 183}, {98, 112}, {100, 118}, {131, 145}, {71, 84}, {237, 254}, {237, 249}, {5, 16}, {7, 18}, {32, 54}, {234, 252}, {233, 255}, {6, 17}, {40, 63}, {169, 190}, {192, 216}, {227, 250}, {32, 58}, {8, 19}, {196, 223}, {12, 23}, {134, 154}, {198, 218}, {9, 20}, {234, 247}, {11, 22}, {69, 91}, {10, 21}, {133, 165}, {218, 250}, {205, 237}, {197, 229}, {196, 228}, {193, 225}, {27, 58}, {220, 253}, {216, 249}, {214, 247}, {211, 242}, {199, 230}, {136, 169}, {138, 171}, {128, 162}, {223, 253}, {132, 166}, {133, 167}, {137, 170}, {213, 246}, {203, 232}, {140, 175}, {144, 179}, {153, 186}, {5, 33}, {223, 251}, {209, 245}, {208, 244}, {79, 107}, {25, 61}, {15, 43}, {14, 42}, {13, 41}, {12, 40}, {7, 35}, {6, 34}, {132, 160}, {14, 43}, {23, 50}, {21, 48}, {15, 42}, {130, 167}, {31, 57}, {216, 254}, {215, 241}, {207, 233}, {195, 229}, {64, 102}, {22, 49}, {220, 251}, {212, 243}, {130, 165}, {139, 172}, {23, 63}, {147, 187}, {148, 188}, {149, 189}, {150, 190}, {151, 191}, {135, 174}, {136, 161}, {141, 164}, {145, 184}, {153, 176}, {159, 182}, {193, 235}, {214, 252}, {24, 51}, {199, 236}, {95, 116}, {81, 122}, {74, 97}, {28, 55}, {146, 185}, {149, 190}, {150, 189}, {8, 36}, {206, 226}, {68, 104}, {20, 56}, {11, 39}, {10, 38}, {9, 37}, {25, 52}, {217, 244}, {213, 248}, {78, 99}, {27, 54}, {128, 173}, {142, 163}, {94, 112}, {205, 227}, {26, 53}, {200, 231}, {66, 109}, {135, 168}, {69, 117}, {215, 231}, {73, 121}, {79, 125}, {222, 236}, {93, 111}, {92, 110}, {139, 184}, {217, 234}, {157, 174}, {72, 125}, {140, 185}, {143, 186}, {148, 161}, {157, 168}, {159, 170}, {19, 37}, {73, 127}, {16, 39}, {90, 109}, {70, 126}, {222, 230}, {64, 121}, {200, 241}, {81, 104}, {17, 43}, {208, 234}, {92, 102}, {87, 109}, {142, 180}, {20, 47}, {219, 224}, {71, 124}, {16, 44}, {221, 225}, {207, 243}, {18, 46}, {17, 45}, {141, 177}, {70, 123}, {212, 233}, {210, 239}, {74, 119}, {136, 181}, {138, 183}, {145, 172}, {146, 175}, {68, 122}, {206, 240}, {204, 242}, {156, 162}, {19, 44}, {137, 182}, {143, 176}, {13, 77}, {55, 118}, {57, 120}, {49, 114}, {50, 113}, {151, 212}, {48, 117}, {148, 211}, {13, 69}, {35, 106}, {48, 121}, {156, 213}, {47, 101}, {6, 77}, {155, 208}, {34, 110}, {188, 240}, {35, 111}, {158, 210}, {56, 119}, {31, 79}, {189, 237}, {187, 235}, {59, 107}, {28, 78}, {57, 107}, {147, 192}, {183, 228}, {24, 76}, {180, 224}, {62, 106}, {51, 103}, {36, 112}, {19, 70}, {54, 99}, {16, 70}, {21, 67}, {17, 71}, {26, 77}, {58, 109}, {55, 96}, {41, 113}, {42, 114}, {56, 97}, {182, 239}, {155, 194}, {18, 72}, {187, 225}, {46, 116}, {158, 196}, {57, 98}, {181, 238}, {62, 101}, {154, 193}, {21, 73}, {30, 66}, {23, 75}, {22, 74}, {154, 198}, {56, 101}, {45, 115}, {189, 227}, {188, 226}, {29, 66}, {59, 100}, {156, 195}, {165, 197}, {175, 207}, {174, 206}, {173, 205}, {172, 204}, {168, 201}, {170, 203}, {160, 194}, {176, 210}, {164, 198}, {165, 199}, {169, 202}, {186, 217}, {163, 199}, {38, 67}, {178, 215}, {177, 212}, {164, 193}, {163, 197}, {49, 86}, {50, 85}, {53, 93}, {183, 223}, {182, 222}, {181, 221}, {180, 220}, {179, 219}, {171, 195}, {33, 72}, {54, 95}, {52, 93}, {47, 69}, {52, 94}, {48, 91}, {53, 94}, {184, 214}, {191, 209}, {51, 92}, {167, 200}, {160, 208}, {184, 201}, {34, 80}, {60, 78}, {51, 65}, {38, 84}, {35, 81}, {172, 216}, {176, 196}, {175, 219}, {174, 218}, {173, 217}, {38, 83}, {45, 88}, {36, 82}, {44, 90}, {167, 209}, {46, 89}, {191, 200}, {186, 205}, {61, 74}, {18, 106}, {45, 84}, {185, 192}, {178, 203}, {40, 83}, {44, 87}, {40, 84}, {179, 207}, {42, 86}, {41, 85}, {170, 215}, {50, 76}, {188, 194}, {58, 68}, {168, 214}, {171, 213}, {105, 230}, {77, 221}, {108, 255}, {101, 241}, {105, 242}, {106, 241}, {108, 240}, {67, 229}, {4, 169}, {65, 240}, {67, 249}, {64, 253}, {65, 255}, {11, 203}, {115, 178}, {1, 195}, {61, 254}, {83, 144}, {80, 147}, {1, 197}, {9, 204}, {63, 250}, {32, 229}, {12, 202}, {60, 250}, {59, 252}, {116, 179}, {124, 180}, {63, 246}, {72, 129}, {52, 254}, {62, 244}, {60, 246}, {26, 209}, {75, 128}, {88, 148}, {91, 151}, {90, 150}, {89, 149}, {125, 177}, {4, 201}, {75, 134}, {59, 245}, {79, 129}, {39, 247}, {91, 139}, {90, 138}, {89, 137}, {88, 136}, {87, 135}, {86, 134}, {85, 133}, {82, 131}, {80, 130}, {87, 133}, {85, 135}, {30, 202}, {117, 161}, {62, 235}, {71, 145}, {86, 128}, {123, 173}, {83, 132}, {120, 160}, {3, 218}, {88, 129}, {32, 249}, {123, 162}, {125, 164}, {9, 211}, {73, 146}, {122, 161}, {37, 248}, {82, 143}, {120, 166}, {124, 163}, {2, 226}, {99, 131}, {98, 130}, {3, 227}, {114, 146}, {22, 247}, {28, 253}, {14, 236}, {111, 140}, {122, 158}, {97, 132}, {104, 142}, {5, 226}, {110, 137}, {53, 221}, {116, 157}, {126, 151}, {127, 150}, {103, 141}, {113, 155}, {7, 236}, {12, 231}, {11, 224}, {117, 158}, {20, 248}, {96, 140}, {99, 143}, {113, 159}, {119, 153}, {29, 242}, {115, 156}, {24, 232}, {25, 233}, {97, 144}, {98, 147}, {104, 154}, {115, 129}, {8, 251}, {27, 232}, {15, 251}, {27, 238}, {126, 139}, {127, 138}, {10, 252}, {25, 239}, {24, 238}, {111, 152}, {96, 152}, {30, 231}, {119, 141}, {29, 230}, {110, 149}, {26, 228}, {103, 153}, {10, 245}, {124, 131}, {28, 256}, {64, 256}, {235, 256}, {244, 256} }>;

(II) A more general form is to represent the graph as the orbit of {30, 31} under the group generated by the following permutations:

a: (2, 197)(3, 245)(4, 231)(5, 195)(6, 165)(7, 228)(8, 215)(9, 232)(10, 218)(11, 248)(12, 201)(13, 163)(14, 209)(15, 200)(16, 156)(17, 133)(18, 183)(19, 178)(20, 224)(21, 198)(22, 243)(23, 184)(24, 204)(26, 236)(27, 211)(28, 244)(29, 181)(30, 169)(31, 190)(32, 188)(33, 171)(34, 130)(35, 196)(36, 170)(37, 203)(38, 174)(39, 213)(40, 168)(41, 124)(42, 191)(43, 167)(44, 115)(45, 87)(46, 166)(47, 180)(48, 154)(49, 212)(50, 145)(51, 192)(52, 239)(53, 222)(54, 194)(55, 217)(56, 219)(57, 149)(58, 148)(59, 227)(60, 234)(61, 233)(62, 253)(63, 214)(64, 235)(65, 216)(66, 136)(67, 206)(68, 161)(69, 142)(70, 162)(71, 85)(72, 138)(73, 164)(74, 207)(75, 139)(76, 172)(77, 199)(78, 208)(79, 150)(81, 158)(82, 159)(83, 157)(84, 135)(86, 151)(88, 109)(89, 120)(90, 129)(91, 134)(92, 147)(93, 210)(94, 182)(95, 160)(96, 186)(97, 179)(98, 110)(99, 155)(100, 205)(101, 220)(102, 187)(103, 185)(104, 117)(105, 225)(106, 223)(107, 189)(108, 237)(111, 176)(112, 137)(113, 131)(114, 177)(116, 132)(118, 173)(119, 175)(121, 193)(125, 127)(126, 128)(140, 153)(141, 146)(143, 152)(221, 230)(226, 229)(238, 242)(240, 249)(241, 251)(246, 247)(250, 252)(254, 255)
b: (1, 2, 6, 17, 45, 88, 136, 169, 202, 30, 66, 109, 87, 133, 165, 197)(3, 10, 18, 48, 89, 139, 170, 204, 232, 37, 76, 112, 134, 166, 198, 228)(4, 12, 31, 68, 90, 135, 167, 199, 229, 5, 13, 34, 71, 115, 148, 181)(7, 21, 46, 91, 137, 172, 203, 9, 24, 36, 75, 120, 154, 183, 218, 245)(8, 23, 57, 104, 138, 174, 209, 236, 67, 33, 69, 110, 145, 178, 211, 238)(11, 20, 51, 82, 128, 160, 193, 223, 250, 59, 35, 73, 116, 151, 182, 216)(14, 38, 72, 117, 149, 184, 215, 242, 27, 19, 50, 98, 142, 171, 206, 26)(15, 40, 79, 122, 150, 168, 200, 230, 32, 16, 41, 80, 124, 156, 188, 221)(22, 56, 103, 143, 173, 208, 235, 253, 60, 100, 111, 146, 179, 212, 239, 254)(25, 61, 74, 119, 153, 186, 217, 244, 256, 28, 55, 96, 140, 175, 207, 233)(29, 58, 44, 85, 130, 163, 195, 226, 77, 43, 84, 129, 161, 190, 201, 231)(39, 47, 92, 131, 162, 194, 225, 251, 63, 107, 81, 127, 157, 191, 222, 249)(42, 83, 125, 158, 189, 214, 241, 105, 54, 70, 113, 147, 180, 213, 240, 53)(49, 97, 141, 176, 205, 234, 62, 64, 78, 118, 152, 185, 219, 243, 255, 52)(65, 94, 86, 132, 164, 196, 227, 252, 106, 121, 95, 126, 159, 192, 224, 248)(93, 114, 144, 177, 210, 237, 247, 101, 102, 99, 123, 155, 187, 220, 246, 108)
c: (2, 195)(3, 232)(4, 231)(5, 197)(6, 156)(7, 224)(8, 200)(9, 245)(10, 211)(11, 236)(12, 169)(13, 171)(14, 203)(15, 215)(16, 165)(17, 115)(18, 180)(19, 167)(20, 228)(21, 194)(22, 222)(23, 190)(24, 227)(26, 248)(27, 218)(28, 235)(29, 214)(30, 201)(31, 184)(32, 206)(33, 163)(34, 162)(35, 219)(36, 191)(37, 209)(38, 148)(39, 199)(40, 136)(41, 138)(42, 170)(43, 178)(44, 133)(46, 142)(47, 183)(48, 160)(49, 182)(50, 150)(51, 205)(52, 233)(53, 243)(54, 198)(55, 187)(56, 196)(57, 139)(58, 174)(59, 204)(60, 225)(61, 239)(62, 253)(63, 181)(64, 244)(65, 237)(66, 168)(67, 188)(68, 157)(69, 166)(70, 130)(71, 129)(72, 124)(73, 155)(74, 210)(75, 149)(76, 189)(77, 213)(78, 193)(79, 145)(80, 123)(81, 179)(82, 177)(83, 161)(84, 88)(85, 90)(86, 137)(89, 134)(91, 120)(92, 173)(93, 207)(94, 212)(95, 154)(96, 185)(97, 158)(98, 126)(99, 164)(100, 192)(101, 223)(102, 217)(103, 186)(104, 116)(105, 234)(106, 220)(107, 172)(108, 216)(109, 135)(110, 128)(111, 175)(112, 151)(113, 127)(114, 159)(117, 132)(118, 147)(119, 176)(121, 208)(122, 144)(125, 131)(141, 143)(146, 152)(221, 246)(226, 229)(230, 247)(238, 250)(240, 249)(241, 251)(242, 252)(254, 255)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 256, 86 ]
256
-1 2 5 195 197
-2 1 13 6 226
-3 14 7 227 218
-4 201 15 169 8
-5 33 1 16 226
-6 77 34 2 17
-7 35 3 236 18
-8 36 4 19 251
-9 211 37 204 20
-10 245 38 21 252
-11 22 224 203 39
-12 231 23 202 40
-13 77 2 69 41
-14 3 236 42 43
-15 4 42 251 43
-16 44 70 5 39
-17 45 71 6 43
-18 46 72 7 106
-19 44 37 70 8
-20 56 47 248 9
-21 67 48 73 10
-22 11 49 247 74
-23 12 50 63 75
-24 232 51 238 76
-25 233 61 52 239
-26 77 209 228 53
-27 232 58 238 54
-28 55 253 78 256
-29 66 242 31 230
-30 66 231 202 31
-31 57 79 29 30
-32 58 249 229 54
-33 46 5 39 72
-34 110 80 6 43
-35 111 81 7 106
-36 112 37 82 8
-37 36 248 19 9
-38 67 83 84 10
-39 11 33 16 247
-40 12 83 84 63
-41 13 47 113 85
-42 14 15 114 86
-43 34 14 15 17
-44 90 16 19 87
-45 88 115 17 84
-46 33 89 116 18
-47 101 69 41 20
-48 121 91 117 21
-49 22 114 61 86
-50 23 113 85 76
-51 24 92 103 65
-52 254 25 93 94
-53 221 26 93 94
-54 99 27 95 32
-55 60 28 96 118
-56 101 20 97 119
-57 107 31 98 120
-58 68 27 32 109
-59 100 245 107 252
-60 55 78 246 250
-61 254 25 49 74
-62 101 244 235 106
-63 23 246 40 250
-64 121 253 102 256
-65 255 51 240 76
-66 68 29 30 109
-67 38 249 229 21
-68 66 122 58 104
-69 13 47 91 117
-70 123 16 126 19
-71 145 124 17 84
-72 33 125 18 129
-73 121 146 127 21
-74 22 61 97 119
-75 23 134 128 76
-76 24 50 75 65
-77 221 13 26 6
-78 99 60 28 95
-79 125 107 129 31
-80 34 92 147 130
-81 122 35 93 104
-82 143 36 94 131
-83 132 144 38 40
-84 45 38 71 40
-85 133 135 50 41
-86 134 49 128 42
-87 44 133 135 109
-88 45 136 148 129
-89 46 137 149 95
-90 44 138 150 109
-91 69 48 139 151
-92 110 80 102 51
-93 111 81 52 53
-94 112 82 52 53
-95 78 89 116 54
-96 55 100 140 152
-97 132 56 144 74
-98 57 112 147 130
-99 143 78 54 131
-100 59 96 118 108
-101 56 47 62 241
-102 92 103 105 64
-103 102 51 141 153
-104 154 68 81 142
-105 121 242 102 230
-106 35 18 62 241
-107 57 79 59 108
-108 100 255 107 240
-109 66 90 58 87
-110 34 92 137 149
-111 35 93 140 152
-112 36 94 98 120
-113 155 159 50 41
-114 146 49 127 42
-115 45 156 178 129
-116 46 157 179 95
-117 69 48 158 161
-118 55 100 123 126
-119 56 74 141 153
-120 166 57 112 160
-121 48 105 73 64
-122 68 81 158 161
-123 70 118 162 173
-124 180 71 163 131
-125 177 79 72 164
-126 70 139 118 151
-127 114 138 73 150
-128 162 173 75 86
-129 88 79 115 72
-130 165 167 80 98
-131 99 145 124 82
-132 166 83 160 97
-133 165 167 85 87
-134 154 75 86 142
-135 168 85 174 87
-136 88 169 181 161
-137 110 89 170 182
-138 90 127 171 183
-139 91 126 172 184
-140 111 96 185 175
-141 177 103 119 164
-142 134 180 104 163
-143 99 176 82 186
-144 157 179 83 97
-145 71 172 184 131
-146 114 73 185 175
-147 187 80 192 98
-148 88 188 211 161
-149 110 89 189 190
-150 90 189 190 127
-151 91 212 191 126
-152 111 155 159 96
-153 176 103 119 186
-154 198 134 104 193
-155 113 194 152 208
-156 213 115 162 195
-157 144 168 116 174
-158 122 210 117 196
-159 113 170 182 152
-160 132 194 120 208
-161 122 136 148 117
-162 123 156 178 128
-163 199 124 142 197
-164 198 125 193 141
-165 133 199 130 197
-166 132 171 183 120
-167 209 133 200 130
-168 135 157 201 214
-169 190 4 136 202
-170 137 159 203 215
-171 166 213 138 195
-172 145 204 139 216
-173 123 128 205 217
-174 135 157 206 218
-175 146 140 207 219
-176 143 210 196 153
-177 212 125 191 141
-178 115 203 215 162
-179 144 116 207 219
-180 220 124 224 142
-181 221 190 136 238
-182 222 137 159 239
-183 166 223 138 228
-184 145 201 214 139
-185 187 146 192 140
-186 143 205 217 153
-187 147 235 225 185
-188 148 226 194 240
-189 149 237 150 227
-190 169 181 149 150
-191 209 177 200 151
-192 147 204 216 185
-193 154 235 225 164
-194 155 188 211 160
-195 1 156 171 229
-196 176 223 158 228
-197 165 1 163 229
-198 154 206 218 164
-199 165 236 163 230
-200 231 167 191 241
-201 168 4 202 184
-202 12 201 169 30
-203 11 232 178 170
-204 242 192 172 9
-205 237 227 173 186
-206 198 226 174 240
-207 243 233 179 175
-208 155 244 234 160
-209 167 245 26 191
-210 176 222 158 239
-211 242 148 194 9
-212 177 243 233 151
-213 156 246 171 248
-214 168 247 184 252
-215 231 178 170 241
-216 254 192 172 249
-217 244 234 173 186
-218 198 3 250 174
-219 220 179 224 175
-220 253 180 251 219
-221 77 181 225 53
-222 210 236 182 230
-223 253 183 196 251
-224 11 232 180 219
-225 187 221 193 238
-226 188 2 5 206
-227 189 3 205 250
-228 245 26 183 196
-229 67 195 32 197
-230 199 222 105 29
-231 12 200 215 30
-232 24 224 27 203
-233 255 25 212 207
-234 247 217 208 252
-235 187 256 193 62
-236 199 222 14 7
-237 254 189 205 249
-238 24 27 181 225
-239 210 255 25 182
-240 188 206 108 65
-241 101 200 215 106
-242 211 105 204 29
-243 212 246 248 207
-244 256 62 217 208
-245 209 59 228 10
-246 243 213 60 63
-247 22 234 214 39
-248 243 37 213 20
-249 67 237 216 32
-250 60 227 63 218
-251 220 223 15 8
-252 234 59 214 10
-253 220 223 28 64
-254 61 237 216 52
-255 233 239 108 65
-256 244 235 28 64
0

**************