C4graphGraph forms for C4 [ 360, 141 ] = XI(Rmap(180,10){6,6|15}_6)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 141 ] = XI(Rmap(180,10){6,6|15}_6).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {147, 210}, {130, 198}, {149, 209}, {131, 199}, {168, 225}, {164, 244}, {132, 213}, {172, 253}, {128, 211}, {170, 249}, {129, 212}, {130, 215}, {133, 211}, {153, 207}, {160, 248}, {173, 245}, {161, 248}, {131, 216}, {162, 249}, {169, 247}, {132, 231}, {152, 254}, {152, 255}, {139, 227}, {148, 252}, {133, 238}, {132, 232}, {153, 245}, {140, 225}, {137, 231}, {139, 251}, {141, 254}, {153, 234}, {142, 253}, {171, 222}, {150, 224}, {139, 252}, {149, 236}, {156, 229}, {147, 237}, {154, 228}, {155, 228}, {68, 192}, {71, 195}, {70, 194}, {69, 193}, {67, 198}, {89, 223}, {48, 184}, {48, 189}, {123, 246}, {122, 235}, {47, 188}, {92, 207}, {96, 244}, {119, 227}, {46, 187}, {65, 215}, {94, 200}, {95, 201}, {67, 219}, {69, 221}, {68, 220}, {92, 197}, {66, 216}, {124, 230}, {93, 199}, {121, 226}, {126, 229}, {72, 212}, {20, 181}, {127, 222}, {97, 192}, {88, 250}, {20, 183}, {98, 193}, {68, 224}, {91, 255}, {19, 182}, {30, 184}, {31, 185}, {72, 239}, {79, 232}, {31, 182}, {127, 214}, {93, 247}, {96, 202}, {97, 203}, {99, 201}, {122, 208}, {87, 251}, {93, 241}, {94, 242}, {95, 243}, {100, 200}, {19, 190}, {98, 204}, {18, 189}, {77, 226}, {64, 239}, {80, 255}, {7, 183}, {65, 240}, {90, 235}, {11, 185}, {13, 191}, {78, 252}, {79, 253}, {4, 183}, {75, 248}, {67, 240}, {66, 241}, {8, 187}, {1, 181}, {3, 182}, {76, 249}, {11, 190}, {9, 188}, {92, 233}, {1, 183}, {12, 186}, {1, 182}, {10, 189}, {2, 181}, {77, 250}, {91, 236}, {1, 185}, {6, 190}, {4, 188}, {3, 187}, {2, 186}, {109, 213}, {12, 181}, {99, 218}, {107, 210}, {2, 184}, {127, 197}, {5, 191}, {3, 190}, {74, 247}, {7, 186}, {5, 184}, {100, 217}, {108, 209}, {4, 186}, {80, 238}, {84, 234}, {2, 189}, {73, 246}, {6, 185}, {3, 194}, {30, 223}, {20, 213}, {18, 211}, {16, 209}, {14, 207}, {5, 196}, {25, 219}, {11, 200}, {17, 210}, {8, 205}, {55, 242}, {54, 243}, {49, 244}, {12, 201}, {6, 192}, {27, 221}, {26, 220}, {7, 193}, {4, 195}, {50, 245}, {19, 212}, {9, 206}, {13, 197}, {23, 223}, {22, 222}, {7, 204}, {35, 239}, {6, 203}, {10, 199}, {8, 197}, {10, 196}, {53, 251}, {52, 250}, {15, 193}, {14, 192}, {5, 202}, {38, 233}, {9, 198}, {22, 199}, {63, 238}, {28, 205}, {26, 203}, {24, 201}, {10, 216}, {63, 237}, {62, 236}, {59, 233}, {58, 232}, {55, 229}, {54, 228}, {51, 225}, {50, 224}, {45, 255}, {44, 254}, {41, 251}, {40, 250}, {37, 247}, {36, 246}, {17, 195}, {16, 194}, {15, 221}, {14, 220}, {11, 217}, {21, 198}, {62, 237}, {45, 254}, {29, 206}, {25, 202}, {33, 244}, {12, 218}, {61, 235}, {60, 234}, {53, 227}, {52, 226}, {43, 253}, {42, 252}, {18, 196}, {13, 219}, {27, 204}, {49, 230}, {39, 240}, {34, 245}, {40, 241}, {47, 246}, {42, 243}, {21, 207}, {30, 196}, {41, 242}, {16, 205}, {8, 214}, {57, 231}, {56, 230}, {39, 249}, {38, 248}, {29, 195}, {28, 194}, {9, 215}, {15, 208}, {23, 200}, {17, 206}, {96, 191}, {43, 202}, {47, 206}, {45, 204}, {46, 205}, {13, 233}, {15, 235}, {14, 234}, {21, 240}, {23, 242}, {22, 241}, {44, 203}, {24, 243}, {54, 218}, {59, 214}, {49, 223}, {55, 217}, {32, 208}, {45, 221}, {44, 220}, {43, 219}, {42, 218}, {41, 217}, {40, 216}, {39, 215}, {38, 214}, {37, 213}, {36, 212}, {35, 211}, {34, 210}, {33, 209}, {24, 224}, {31, 231}, {30, 230}, {29, 229}, {28, 228}, {27, 227}, {26, 226}, {25, 225}, {71, 188}, {16, 236}, {67, 191}, {20, 232}, {19, 239}, {18, 238}, {17, 237}, {70, 187}, {32, 222}, {46, 208}, {42, 299}, {76, 333}, {44, 301}, {56, 314}, {36, 295}, {32, 292}, {71, 323}, {34, 294}, {33, 293}, {86, 338}, {103, 355}, {75, 334}, {43, 300}, {75, 332}, {53, 306}, {81, 342}, {105, 353}, {61, 308}, {105, 352}, {65, 331}, {85, 351}, {90, 342}, {37, 296}, {39, 298}, {83, 350}, {38, 297}, {82, 349}, {113, 353}, {116, 356}, {21, 260}, {29, 268}, {27, 266}, {25, 264}, {23, 262}, {89, 328}, {22, 261}, {73, 346}, {48, 291}, {26, 265}, {112, 357}, {57, 303}, {74, 348}, {28, 267}, {113, 358}, {117, 354}, {76, 340}, {84, 335}, {31, 259}, {82, 334}, {51, 302}, {24, 263}, {78, 337}, {95, 320}, {32, 256}, {40, 265}, {53, 276}, {51, 274}, {96, 321}, {98, 323}, {116, 341}, {118, 343}, {41, 266}, {59, 280}, {97, 322}, {112, 339}, {111, 331}, {118, 338}, {122, 350}, {60, 281}, {106, 335}, {100, 322}, {52, 275}, {61, 282}, {115, 340}, {54, 286}, {114, 346}, {55, 285}, {105, 323}, {58, 273}, {33, 269}, {35, 271}, {34, 270}, {50, 287}, {58, 279}, {56, 277}, {46, 256}, {124, 338}, {47, 257}, {57, 278}, {62, 270}, {63, 271}, {104, 344}, {63, 270}, {117, 324}, {48, 258}, {35, 272}, {62, 269}, {36, 272}, {37, 273}, {109, 345}, {114, 326}, {112, 325}, {116, 321}, {120, 333}, {102, 336}, {60, 260}, {102, 348}, {101, 350}, {119, 332}, {108, 336}, {114, 334}, {61, 256}, {56, 262}, {98, 290}, {99, 291}, {115, 304}, {117, 310}, {121, 317}, {101, 288}, {123, 318}, {88, 286}, {104, 303}, {125, 314}, {124, 315}, {73, 257}, {113, 313}, {118, 318}, {86, 287}, {122, 305}, {66, 268}, {111, 288}, {64, 272}, {126, 302}, {69, 277}, {81, 257}, {82, 258}, {83, 259}, {84, 260}, {85, 261}, {86, 263}, {88, 265}, {97, 304}, {112, 289}, {114, 291}, {116, 293}, {106, 312}, {120, 298}, {88, 267}, {123, 296}, {113, 290}, {117, 294}, {120, 299}, {70, 274}, {100, 304}, {101, 305}, {102, 306}, {103, 307}, {78, 283}, {106, 319}, {111, 314}, {121, 300}, {91, 269}, {107, 316}, {115, 292}, {92, 260}, {72, 274}, {73, 275}, {90, 256}, {64, 283}, {127, 292}, {68, 287}, {103, 316}, {123, 295}, {65, 284}, {87, 266}, {74, 276}, {79, 273}, {118, 296}, {119, 297}, {66, 285}, {80, 271}, {87, 264}, {89, 262}, {94, 319}, {99, 258}, {108, 269}, {110, 268}, {125, 287}, {93, 318}, {126, 285}, {120, 283}, {81, 309}, {82, 310}, {83, 311}, {69, 288}, {71, 290}, {89, 316}, {107, 270}, {110, 267}, {70, 289}, {75, 291}, {125, 277}, {72, 289}, {94, 308}, {95, 309}, {64, 299}, {104, 259}, {84, 312}, {85, 313}, {86, 315}, {90, 309}, {49, 321}, {101, 277}, {102, 278}, {103, 279}, {104, 280}, {105, 281}, {106, 282}, {110, 286}, {121, 265}, {85, 292}, {109, 284}, {52, 326}, {59, 329}, {58, 328}, {79, 317}, {110, 285}, {111, 284}, {74, 318}, {50, 324}, {126, 264}, {60, 330}, {51, 325}, {81, 295}, {91, 301}, {115, 261}, {87, 302}, {77, 311}, {125, 263}, {124, 262}, {108, 278}, {76, 304}, {77, 305}, {83, 303}, {107, 279}, {109, 273}, {78, 307}, {80, 301}, {119, 266}, {57, 327}, {170, 298}, {178, 306}, {157, 284}, {178, 307}, {169, 296}, {164, 293}, {144, 274}, {180, 310}, {154, 286}, {165, 289}, {132, 259}, {165, 290}, {160, 297}, {170, 288}, {179, 313}, {173, 294}, {151, 282}, {158, 275}, {128, 271}, {139, 283}, {170, 314}, {156, 268}, {155, 267}, {129, 272}, {174, 319}, {172, 317}, {166, 311}, {150, 263}, {130, 275}, {138, 280}, {151, 257}, {164, 306}, {160, 315}, {163, 312}, {162, 313}, {159, 258}, {173, 307}, {141, 301}, {168, 264}, {141, 300}, {140, 302}, {142, 300}, {151, 308}, {137, 303}, {178, 276}, {177, 278}, {176, 281}, {128, 298}, {171, 261}, {141, 317}, {167, 279}, {151, 295}, {137, 312}, {152, 297}, {138, 315}, {134, 308}, {135, 309}, {145, 293}, {174, 282}, {144, 294}, {174, 281}, {175, 280}, {134, 319}, {136, 305}, {134, 316}, {140, 310}, {136, 311}, {171, 276}, {148, 299}, {135, 327}, {157, 349}, {146, 339}, {167, 358}, {155, 345}, {166, 356}, {138, 329}, {156, 344}, {165, 353}, {163, 359}, {157, 345}, {150, 336}, {163, 357}, {161, 359}, {135, 320}, {175, 360}, {146, 346}, {133, 335}, {172, 358}, {147, 344}, {175, 356}, {169, 354}, {159, 340}, {131, 335}, {149, 345}, {128, 333}, {143, 322}, {134, 328}, {173, 355}, {166, 360}, {142, 320}, {158, 337}, {145, 321}, {176, 352}, {155, 331}, {154, 330}, {150, 327}, {159, 334}, {137, 347}, {145, 323}, {129, 338}, {144, 324}, {177, 357}, {176, 356}, {152, 332}, {146, 326}, {144, 325}, {179, 358}, {156, 329}, {129, 343}, {179, 357}, {177, 359}, {135, 336}, {130, 346}, {158, 326}, {142, 342}, {131, 347}, {136, 337}, {143, 341}, {147, 329}, {143, 340}, {180, 360}, {138, 343}, {159, 322}, {153, 324}, {133, 347}, {149, 331}, {148, 330}, {165, 325}, {179, 339}, {180, 341}, {178, 337}, {174, 330}, {176, 341}, {143, 360}, {168, 320}, {180, 349}, {136, 355}, {161, 332}, {140, 354}, {162, 333}, {167, 328}, {145, 353}, {161, 339}, {172, 351}, {148, 352}, {169, 349}, {146, 359}, {177, 327}, {160, 343}, {175, 344}, {171, 348}, {163, 347}, {167, 351}, {166, 350}, {164, 348}, {154, 352}, {158, 355}, {162, 351}, {168, 342}, {157, 354} }>;

(II) A more general form is to represent the graph as the orbit of {147, 210} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(22, 33)(24, 36)(25, 38)(27, 41)(29, 44)(30, 46)(32, 49)(34, 52)(35, 54)(37, 57)(39, 60)(40, 62)(42, 64)(43, 59)(45, 55)(47, 68)(48, 70)(50, 73)(51, 75)(56, 61)(58, 83)(63, 88)(65, 84)(66, 91)(67, 92)(69, 94)(71, 97)(72, 99)(74, 102)(76, 105)(77, 107)(79, 104)(80, 110)(81, 86)(82, 112)(85, 116)(87, 119)(89, 122)(90, 124)(93, 108)(95, 129)(96, 127)(98, 100)(101, 134)(103, 136)(106, 111)(109, 137)(113, 143)(114, 144)(115, 145)(117, 146)(118, 135)(120, 148)(121, 147)(123, 150)(125, 151)(126, 152)(128, 154)(130, 153)(131, 149)(133, 155)(138, 142)(140, 161)(141, 156)(157, 163)(158, 173)(159, 165)(160, 168)(162, 176)(164, 171)(166, 167)(169, 177)(170, 174)(172, 175)(179, 180)(181, 182)(183, 185)(184, 187)(186, 190)(188, 192)(189, 194)(191, 197)(193, 200)(195, 203)(196, 205)(198, 207)(199, 209)(201, 212)(202, 214)(204, 217)(206, 220)(208, 223)(210, 226)(211, 228)(213, 231)(215, 234)(216, 236)(218, 239)(219, 233)(221, 242)(222, 244)(224, 246)(225, 248)(227, 251)(229, 254)(230, 256)(232, 259)(235, 262)(237, 265)(238, 267)(240, 260)(241, 269)(243, 272)(245, 275)(247, 278)(249, 281)(250, 270)(252, 283)(253, 280)(255, 285)(257, 287)(258, 289)(261, 293)(263, 295)(264, 297)(268, 301)(271, 286)(273, 303)(274, 291)(276, 306)(277, 308)(279, 311)(282, 314)(284, 312)(288, 319)(290, 322)(292, 321)(294, 326)(296, 327)(298, 330)(300, 329)(302, 332)(304, 323)(305, 316)(307, 337)(309, 338)(310, 339)(313, 341)(315, 342)(317, 344)(318, 336)(320, 343)(324, 346)(325, 334)(328, 350)(331, 335)(333, 352)(340, 353)(345, 347)(349, 357)(351, 356)(354, 359)(358, 360)
b: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17, 27)(19, 30)(21, 32)(23, 35)(24, 37)(26, 40)(28, 43)(29, 45)(31, 48)(33, 51)(34, 53)(36, 56)(38, 59)(39, 61)(41, 63)(42, 58)(44, 66)(46, 67)(47, 69)(49, 72)(50, 74)(52, 77)(54, 79)(55, 80)(57, 82)(60, 85)(62, 87)(64, 89)(65, 90)(68, 93)(70, 96)(71, 98)(73, 101)(75, 104)(76, 106)(78, 103)(81, 111)(83, 114)(84, 115)(86, 118)(88, 121)(91, 126)(92, 127)(94, 128)(95, 109)(97, 131)(99, 132)(100, 133)(102, 117)(105, 113)(107, 139)(108, 140)(110, 141)(112, 116)(119, 147)(120, 134)(122, 130)(123, 125)(124, 129)(135, 157)(136, 158)(137, 159)(138, 160)(142, 155)(143, 163)(144, 164)(145, 165)(146, 166)(148, 167)(149, 168)(150, 169)(151, 170)(152, 156)(153, 171)(154, 172)(161, 175)(162, 174)(173, 178)(176, 179)(177, 180)(182, 184)(183, 186)(185, 189)(187, 191)(188, 193)(190, 196)(192, 199)(194, 202)(195, 204)(198, 208)(200, 211)(201, 213)(203, 216)(205, 219)(206, 221)(207, 222)(209, 225)(210, 227)(212, 230)(214, 233)(215, 235)(217, 238)(218, 232)(220, 241)(223, 239)(224, 247)(226, 250)(228, 253)(229, 255)(231, 258)(234, 261)(236, 264)(237, 266)(240, 256)(242, 271)(243, 273)(244, 274)(245, 276)(246, 277)(248, 280)(249, 282)(251, 270)(252, 279)(254, 268)(257, 288)(259, 291)(260, 292)(262, 272)(263, 296)(267, 300)(269, 302)(275, 305)(278, 310)(281, 313)(283, 316)(284, 309)(285, 301)(286, 317)(287, 318)(289, 321)(290, 323)(293, 325)(294, 306)(295, 314)(297, 329)(298, 308)(299, 328)(303, 334)(304, 335)(311, 326)(312, 340)(315, 343)(319, 333)(320, 345)(322, 347)(324, 348)(327, 349)(330, 351)(331, 342)(332, 344)(336, 354)(337, 355)(339, 356)(341, 357)(346, 350)(352, 358)(359, 360)
c: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 24)(16, 26)(18, 29)(22, 34)(23, 36)(25, 39)(27, 42)(28, 44)(30, 47)(32, 50)(33, 52)(35, 55)(37, 58)(38, 60)(40, 62)(41, 64)(43, 65)(45, 54)(46, 68)(48, 71)(49, 73)(51, 76)(53, 78)(56, 81)(57, 83)(59, 84)(61, 86)(63, 66)(69, 95)(70, 97)(72, 100)(74, 103)(75, 105)(77, 108)(79, 109)(80, 110)(82, 113)(85, 117)(87, 120)(88, 91)(89, 123)(90, 125)(93, 107)(94, 129)(96, 130)(98, 99)(101, 135)(102, 136)(104, 137)(106, 138)(111, 142)(112, 143)(114, 145)(115, 144)(116, 146)(118, 134)(119, 148)(121, 149)(122, 150)(124, 151)(126, 128)(127, 153)(131, 147)(133, 156)(140, 162)(141, 155)(152, 154)(157, 172)(158, 164)(159, 165)(160, 174)(161, 176)(163, 175)(166, 177)(167, 169)(168, 170)(171, 173)(179, 180)(181, 183)(182, 185)(184, 188)(187, 192)(189, 195)(191, 198)(193, 201)(194, 203)(196, 206)(197, 207)(199, 210)(200, 212)(202, 215)(204, 218)(205, 220)(208, 224)(209, 226)(211, 229)(213, 232)(214, 234)(216, 237)(217, 239)(219, 240)(221, 243)(222, 245)(223, 246)(225, 249)(227, 252)(228, 254)(230, 257)(231, 259)(233, 260)(235, 263)(236, 265)(238, 268)(241, 270)(242, 272)(244, 275)(247, 279)(248, 281)(250, 269)(251, 283)(253, 284)(255, 286)(256, 287)(258, 290)(261, 294)(262, 295)(264, 298)(266, 299)(267, 301)(271, 285)(274, 304)(276, 307)(277, 309)(278, 311)(280, 312)(282, 315)(288, 320)(289, 322)(291, 323)(292, 324)(293, 326)(296, 328)(297, 330)(300, 331)(302, 333)(305, 336)(306, 337)(308, 338)(310, 313)(314, 342)(316, 318)(317, 345)(319, 343)(321, 346)(325, 340)(327, 350)(329, 335)(332, 352)(334, 353)(339, 341)(344, 347)(348, 355)(349, 358)(351, 354)(356, 359)(357, 360)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 141 ]
360
-1 181 182 183 185
-2 189 181 184 186
-3 187 190 182 194
-4 188 183 195 186
-5 191 202 184 196
-6 190 192 203 185
-7 193 204 183 186
-8 187 214 205 197
-9 198 188 215 206
-10 199 189 216 196
-11 200 190 217 185
-12 201 181 218 186
-13 233 191 197 219
-14 220 234 192 207
-15 221 235 193 208
-16 209 236 194 205
-17 210 237 195 206
-18 189 211 238 196
-19 190 212 182 239
-20 232 213 181 183
-21 198 260 207 240
-22 199 222 261 241
-23 242 200 223 262
-24 243 201 224 263
-25 264 202 225 219
-26 220 265 203 226
-27 221 266 204 227
-28 267 194 205 228
-29 268 195 206 229
-30 223 184 196 230
-31 231 182 259 185
-32 222 256 292 208
-33 209 244 269 293
-34 210 245 270 294
-35 211 271 239 272
-36 212 246 272 295
-37 213 247 273 296
-38 297 233 214 248
-39 298 215 249 240
-40 265 216 250 241
-41 242 266 217 251
-42 243 299 218 252
-43 253 300 202 219
-44 220 254 301 203
-45 221 254 255 204
-46 187 256 205 208
-47 188 246 257 206
-48 189 258 291 184
-49 244 321 223 230
-50 287 245 224 324
-51 225 302 325 274
-52 275 226 326 250
-53 276 227 251 306
-54 286 243 228 218
-55 242 217 229 285
-56 277 314 262 230
-57 231 278 303 327
-58 232 279 273 328
-59 233 214 280 329
-60 330 234 281 260
-61 308 256 235 282
-62 236 269 237 270
-63 237 270 238 271
-64 299 239 272 283
-65 331 215 240 284
-66 268 216 241 285
-67 198 191 240 219
-68 220 287 224 192
-69 221 277 288 193
-70 187 289 194 274
-71 188 290 323 195
-72 212 289 239 274
-73 275 246 257 346
-74 276 247 348 318
-75 332 334 291 248
-76 333 249 304 340
-77 311 226 250 305
-78 337 283 252 307
-79 253 232 273 317
-80 255 301 238 271
-81 309 342 257 295
-82 310 334 258 349
-83 311 259 303 350
-84 234 312 335 260
-85 313 292 261 351
-86 287 315 338 263
-87 264 266 302 251
-88 286 265 267 250
-89 223 316 262 328
-90 309 342 256 235
-91 255 301 236 269
-92 233 260 207 197
-93 199 247 241 318
-94 242 308 319 200
-95 243 309 320 201
-96 244 321 191 202
-97 322 192 203 304
-98 290 323 193 204
-99 201 258 291 218
-100 200 322 304 217
-101 277 288 305 350
-102 278 336 348 306
-103 355 279 316 307
-104 344 280 259 303
-105 352 353 323 281
-106 319 312 335 282
-107 210 279 270 316
-108 209 278 269 336
-109 213 345 273 284
-110 286 267 268 285
-111 331 288 314 284
-112 289 357 325 339
-113 353 290 313 358
-114 334 291 346 326
-115 292 304 261 340
-116 341 321 356 293
-117 310 354 324 294
-118 343 338 296 318
-119 297 266 332 227
-120 298 299 333 283
-121 265 300 226 317
-122 235 305 350 208
-123 246 295 296 318
-124 315 338 262 230
-125 287 277 314 263
-126 264 302 229 285
-127 222 214 292 197
-128 298 211 333 271
-129 343 212 272 338
-130 198 275 346 215
-131 199 335 347 216
-132 231 232 213 259
-133 211 335 347 238
-134 308 319 316 328
-135 309 320 336 327
-136 311 355 337 305
-137 231 312 303 347
-138 343 280 315 329
-139 227 283 251 252
-140 310 354 225 302
-141 254 300 301 317
-142 253 320 342 300
-143 341 322 360 340
-144 324 325 294 274
-145 353 321 323 293
-146 346 326 359 339
-147 210 344 237 329
-148 330 352 299 252
-149 209 331 345 236
-150 224 336 327 263
-151 308 257 282 295
-152 297 254 255 332
-153 234 245 324 207
-154 286 330 352 228
-155 331 267 345 228
-156 344 268 229 329
-157 354 345 349 284
-158 275 355 326 337
-159 322 334 258 340
-160 297 343 248 315
-161 332 248 359 339
-162 333 313 249 351
-163 312 357 347 359
-164 244 293 348 306
-165 353 289 290 325
-166 311 356 360 350
-167 279 358 328 351
-168 264 320 342 225
-169 354 247 349 296
-170 298 288 314 249
-171 276 222 348 261
-172 253 358 317 351
-173 245 355 294 307
-174 319 330 281 282
-175 344 356 280 360
-176 341 352 356 281
-177 278 357 359 327
-178 276 337 306 307
-179 313 357 358 339
-180 341 310 349 360
-181 1 12 2 20
-182 1 3 19 31
-183 1 4 7 20
-184 2 48 5 30
-185 11 1 6 31
-186 12 2 4 7
-187 46 3 70 8
-188 47 4 71 9
-189 2 48 18 10
-190 11 3 6 19
-191 67 13 5 96
-192 68 14 6 97
-193 69 15 7 98
-194 3 70 16 28
-195 4 71 17 29
-196 5 18 30 10
-197 13 92 127 8
-198 67 9 130 21
-199 22 93 10 131
-200 11 23 100 94
-201 99 12 24 95
-202 25 5 96 43
-203 44 26 6 97
-204 45 27 7 98
-205 46 16 28 8
-206 47 17 29 9
-207 14 92 21 153
-208 122 46 15 32
-209 33 16 149 108
-210 34 147 17 107
-211 133 35 18 128
-212 36 72 19 129
-213 132 37 20 109
-214 59 38 127 8
-215 39 9 130 65
-216 66 40 10 131
-217 11 55 100 41
-218 99 12 42 54
-219 67 13 25 43
-220 44 68 14 26
-221 45 69 15 27
-222 22 127 171 32
-223 23 89 49 30
-224 24 68 50 150
-225 25 168 51 140
-226 77 121 26 52
-227 27 139 53 119
-228 154 155 28 54
-229 55 156 126 29
-230 56 124 49 30
-231 132 57 137 31
-232 132 79 58 20
-233 13 59 92 38
-234 14 60 84 153
-235 122 90 15 61
-236 91 16 149 62
-237 147 17 62 63
-238 133 80 18 63
-239 35 72 19 64
-240 67 39 21 65
-241 22 66 93 40
-242 55 23 94 41
-243 24 95 42 54
-244 33 49 96 164
-245 34 50 173 153
-246 123 36 47 73
-247 37 169 93 74
-248 38 160 161 75
-249 170 39 162 76
-250 77 88 40 52
-251 139 41 53 87
-252 78 148 139 42
-253 79 172 43 142
-254 44 45 141 152
-255 45 80 91 152
-256 46 90 61 32
-257 47 81 73 151
-258 99 48 82 159
-259 132 104 83 31
-260 92 60 84 21
-261 22 115 171 85
-262 23 56 89 124
-263 24 125 150 86
-264 25 168 126 87
-265 88 121 26 40
-266 27 41 119 87
-267 88 110 155 28
-268 66 110 156 29
-269 33 91 62 108
-270 34 62 63 107
-271 35 80 128 63
-272 35 36 129 64
-273 79 58 37 109
-274 144 70 72 51
-275 158 73 52 130
-276 178 171 74 53
-277 56 101 69 125
-278 177 57 102 108
-279 167 58 103 107
-280 59 104 138 175
-281 176 60 105 174
-282 61 106 151 174
-283 78 139 64 120
-284 111 157 65 109
-285 55 66 110 126
-286 88 110 154 54
-287 68 125 50 86
-288 111 101 69 170
-289 165 112 70 72
-290 165 113 71 98
-291 99 48 114 75
-292 115 127 85 32
-293 33 145 116 164
-294 34 144 117 173
-295 123 36 81 151
-296 123 37 169 118
-297 38 160 119 152
-298 170 39 128 120
-299 148 42 64 120
-300 121 141 43 142
-301 44 80 91 141
-302 126 51 140 87
-303 57 104 137 83
-304 100 115 97 76
-305 77 122 101 136
-306 178 102 53 164
-307 78 178 103 173
-308 134 61 94 151
-309 90 135 81 95
-310 180 82 117 140
-311 77 166 136 83
-312 137 84 106 163
-313 113 179 85 162
-314 56 111 125 170
-315 124 138 160 86
-316 89 134 103 107
-317 121 79 172 141
-318 123 93 74 118
-319 134 94 106 174
-320 135 168 95 142
-321 145 49 116 96
-322 143 100 159 97
-323 145 71 105 98
-324 144 50 117 153
-325 165 144 112 51
-326 146 114 158 52
-327 177 57 135 150
-328 89 134 167 58
-329 156 59 147 138
-330 154 60 148 174
-331 111 155 149 65
-332 161 75 119 152
-333 128 162 76 120
-334 114 82 159 75
-335 133 84 106 131
-336 102 135 150 108
-337 78 178 136 158
-338 124 118 129 86
-339 112 146 179 161
-340 143 115 159 76
-341 143 176 180 116
-342 90 168 81 142
-343 138 160 118 129
-344 156 147 104 175
-345 155 157 149 109
-346 146 114 73 130
-347 133 137 163 131
-348 102 171 74 164
-349 157 169 180 82
-350 122 166 101 83
-351 167 172 85 162
-352 154 176 148 105
-353 165 145 113 105
-354 157 169 117 140
-355 103 136 158 173
-356 176 166 116 175
-357 177 112 179 163
-358 167 113 179 172
-359 177 146 161 163
-360 143 166 180 175
0

**************