[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 408, 19 ]. See Glossary for some
detail.
PS( 8, 51; 8) = PS( 8, 51; 19) = PS( 8,102; 19)
= PS( 8,102; 43) = MSZ ( 24, 17, 7, 2) = UG(ATD[408, 5])
= UG(ATD[408, 6]) = MG(Cmap(408, 8) { 8, 24| 4}_102) = MG(Cmap(408, 9) {
8, 24| 4}_102)
= HT[408, 3]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 | 0 | - | - | - | 0 | - | 0 |
| 2 | - | - | - | 0 | - | 26 | - | - | - | - | 0 | 32 |
| 3 | - | - | - | 26 | 0 | - | - | - | - | 28 | 32 | - |
| 4 | - | 0 | 8 | - | - | - | - | 0 | 0 | - | - | - |
| 5 | 0 | - | 0 | - | - | - | 0 | - | 6 | - | - | - |
| 6 | 0 | 8 | - | - | - | - | 14 | 28 | - | - | - | - |
| 7 | - | - | - | - | 0 | 20 | - | - | - | - | 1 | 11 |
| 8 | - | - | - | 0 | - | 6 | - | - | - | 33 | - | 21 |
| 9 | - | - | - | 0 | 28 | - | - | - | - | 23 | 5 | - |
| 10 | 0 | - | 6 | - | - | - | - | 1 | 11 | - | - | - |
| 11 | - | 0 | 2 | - | - | - | 33 | - | 29 | - | - | - |
| 12 | 0 | 2 | - | - | - | - | 23 | 13 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | - | - | - | - | - | - | 0 | - | 0 | - | - | - | 0 | - | - |
| 2 | 0 | - | 15 | 15 | - | - | - | - | - | - | - | - | - | - | - | - | 15 |
| 3 | - | 9 | - | - | - | 9 | - | - | - | 9 | - | 9 | - | - | - | - | - |
| 4 | - | 9 | - | 1 23 | - | - | - | 23 | - | - | - | - | - | - | - | - | - |
| 5 | - | - | - | - | - | 0 | - | - | - | 22 | 8 | - | 0 | - | - | - | - |
| 6 | - | - | 15 | - | 0 | - | - | 7 | - | - | - | 13 | - | - | - | - | - |
| 7 | - | - | - | - | - | - | - | - | - | 22 | - | 8 | - | 0 18 | - | - | - |
| 8 | - | - | - | 1 | - | 17 | - | - | - | - | - | 21 | - | - | - | 15 | - |
| 9 | 0 | - | - | - | - | - | - | - | - | - | - | - | 17 | 9 | 19 | - | - |
| 10 | - | - | 15 | - | 2 | - | 2 | - | - | - | - | - | - | - | - | 1 | - |
| 11 | 0 | - | - | - | 16 | - | - | - | - | - | - | - | - | 11 | - | 3 | - |
| 12 | - | - | 15 | - | - | 11 | 16 | 3 | - | - | - | - | - | - | - | - | - |
| 13 | - | - | - | - | 0 | - | - | - | 7 | - | - | - | - | - | 11 | - | 3 |
| 14 | - | - | - | - | - | - | 0 6 | - | 15 | - | 13 | - | - | - | - | - | - |
| 15 | 0 | - | - | - | - | - | - | - | 5 | - | - | - | 13 | - | - | 17 | - |
| 16 | - | - | - | - | - | - | - | 9 | - | 23 | 21 | - | - | - | 7 | - | - |
| 17 | - | 9 | - | - | - | - | - | - | - | - | - | - | 21 | - | - | - | 7 17 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 1 | - | - | - | - | - | 0 19 |
| 2 | 0 50 | - | 25 33 | - | - | - | - | - |
| 3 | - | 18 26 | - | 9 47 | - | - | - | - |
| 4 | - | - | 4 42 | - | 19 21 | - | - | - |
| 5 | - | - | - | 30 32 | - | 15 50 | - | - |
| 6 | - | - | - | - | 1 36 | - | 17 43 | - |
| 7 | - | - | - | - | - | 8 34 | - | 46 50 |
| 8 | 0 32 | - | - | - | - | - | 1 5 | - |