[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 36 ]. See Glossary for some
detail.
PL(MSY( 18, 12, 5, 0)) = PL(MSY( 18, 12, 7, 0)) = PL(Br( 18, 12; 5))
= PL(ATD[ 12, 3]#DCyc[ 9]) = PL(ATD[ 12, 3]#DCyc[ 18]) = PL(CSI(W( 6, 2)[
12^ 2], 9))
= PL(CSI(W( 6, 2)[ 12^ 2], 18)) = BGCG(W( 6, 2), C_ 18, {7', 8'}) = BGCG(DW(
18, 3), C_ 4, 3)
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
| 2 | - | - | - | - | - | - | 0 | 0 | - | - | 0 | 0 |
| 3 | - | - | - | - | - | - | - | - | 9 | 9 | 0 | 0 |
| 4 | - | - | - | - | - | - | 1 | 0 | 19 | - | - | 18 |
| 5 | - | - | - | - | - | - | - | 0 | 19 | 18 | 28 | - |
| 6 | - | - | - | - | - | - | 10 | - | - | 18 | 28 | 27 |
| 7 | 0 | 0 | - | 35 | - | 26 | - | - | - | - | - | - |
| 8 | 0 | 0 | - | 0 | 0 | - | - | - | - | - | - | - |
| 9 | 0 | - | 27 | 17 | 17 | - | - | - | - | - | - | - |
| 10 | 0 | - | 27 | - | 18 | 18 | - | - | - | - | - | - |
| 11 | - | 0 | 0 | - | 8 | 8 | - | - | - | - | - | - |
| 12 | - | 0 | 0 | 18 | - | 9 | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
| 2 | - | - | - | - | - | - | 0 | 0 | - | - | 0 | 0 |
| 3 | - | - | - | - | - | - | - | - | 27 | 27 | 0 | 0 |
| 4 | - | - | - | - | - | - | 28 | 0 | - | - | 10 | 18 |
| 5 | - | - | - | - | - | - | 28 | 0 | 10 | 18 | - | - |
| 6 | - | - | - | - | - | - | - | - | 10 | 18 | 1 | 9 |
| 7 | 0 | 0 | - | 8 | 8 | - | - | - | - | - | - | - |
| 8 | 0 | 0 | - | 0 | 0 | - | - | - | - | - | - | - |
| 9 | 0 | - | 9 | - | 26 | 26 | - | - | - | - | - | - |
| 10 | 0 | - | 9 | - | 18 | 18 | - | - | - | - | - | - |
| 11 | - | 0 | 0 | 26 | - | 35 | - | - | - | - | - | - |
| 12 | - | 0 | 0 | 18 | - | 27 | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | 0 1 | 0 17 | - | - | - | - |
| 2 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
| 3 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 0 |
| 4 | - | - | - | - | - | - | - | - | - | - | 0 35 | 0 19 |
| 5 | - | - | - | - | - | - | - | - | 17 | 1 | 35 | 19 |
| 6 | - | - | - | - | - | - | 19 | 35 | 17 | 1 | - | - |
| 7 | 0 35 | 0 | - | - | - | 17 | - | - | - | - | - | - |
| 8 | 0 19 | 0 | - | - | - | 1 | - | - | - | - | - | - |
| 9 | - | 0 | 0 | - | 19 | 19 | - | - | - | - | - | - |
| 10 | - | 0 | 0 | - | 35 | 35 | - | - | - | - | - | - |
| 11 | - | - | 0 | 0 1 | 1 | - | - | - | - | - | - | - |
| 12 | - | - | 0 | 0 17 | 17 | - | - | - | - | - | - | - |