[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 512, 3 ]. See Glossary for some
detail.
{4, 4}_< 24, 8> = MPS( 32, 32; 1) = MPS( 32, 32; 15)
= MPS( 16, 64; 1) = MPS( 16, 64; 31) = PL(MC3( 8, 32, 1, 15, 15, 16, 1),
[16^16, 32^8])
= PL(MC3( 16, 16, 1, 7, 7, 8, 1), [16^16, 32^8]) = UG(ATD[512, 171]) =
UG(ATD[512, 172])
= UG(ATD[512, 173]) = MG(Rmap(512,1122) { 32, 64| 16}_ 64) = DG(Rmap(512,1122)
{ 32, 64| 16}_ 64)
= MG(Rmap(512,1123) { 32, 64| 2}_ 64) = DG(Rmap(512,1123) { 32, 64| 2}_ 64) =
DG(Rmap(512,1125) { 64, 32| 16}_ 64)
= DG(Rmap(512,1126) { 64, 32| 2}_ 64) = AT[512, 199]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | - | - | - | 0 | 0 |
| 2 | 0 | - | 1 | 0 | - | - | - | 1 |
| 3 | 0 | 63 | - | 0 | 63 | - | - | - |
| 4 | - | 0 | 0 | - | 0 | 63 | - | - |
| 5 | - | - | 1 | 0 | - | 0 | 37 | - |
| 6 | - | - | - | 1 | 0 | - | 38 | 38 |
| 7 | 0 | - | - | - | 27 | 26 | - | 1 |
| 8 | 0 | 63 | - | - | - | 26 | 63 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | - | - | - | 0 | 0 |
| 2 | 0 | - | 1 | 0 | - | - | - | 1 |
| 3 | 0 | 63 | - | 0 | 63 | - | - | - |
| 4 | - | 0 | 0 | - | 0 | 63 | - | - |
| 5 | - | - | 1 | 0 | - | 0 | 53 | - |
| 6 | - | - | - | 1 | 0 | - | 54 | 54 |
| 7 | 0 | - | - | - | 11 | 10 | - | 1 |
| 8 | 0 | 63 | - | - | - | 10 | 63 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 63 | 0 | - | - | - | - | - | 0 |
| 2 | 0 | 1 63 | 0 | - | - | - | - | - |
| 3 | - | 0 | 1 63 | 0 | - | - | - | - |
| 4 | - | - | 0 | 1 63 | 0 | - | - | - |
| 5 | - | - | - | 0 | 1 63 | 0 | - | - |
| 6 | - | - | - | - | 0 | 1 63 | 0 | - |
| 7 | - | - | - | - | - | 0 | 1 63 | 40 |
| 8 | 0 | - | - | - | - | - | 24 | 1 63 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | - | - | 0 58 | - | - | 0 |
| 2 | 0 | - | 0 | - | - | 0 58 | - | - |
| 3 | - | 0 | - | 0 | - | - | 0 58 | - |
| 4 | - | - | 0 | - | 1 | - | - | 1 7 |
| 5 | 0 6 | - | - | 63 | - | 0 | - | - |
| 6 | - | 0 6 | - | - | 0 | - | 0 | - |
| 7 | - | - | 0 6 | - | - | 0 | - | 7 |
| 8 | 0 | - | - | 57 63 | - | - | 57 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|
| 1 | 1 63 | 0 62 | - | - | - | - | - | - |
| 2 | 0 2 | - | 61 63 | - | - | - | - | - |
| 3 | - | 1 3 | - | 0 62 | - | - | - | - |
| 4 | - | - | 0 2 | - | 0 62 | - | - | - |
| 5 | - | - | - | 0 2 | - | 0 62 | - | - |
| 6 | - | - | - | - | 0 2 | - | 0 62 | - |
| 7 | - | - | - | - | - | 0 2 | - | 0 62 |
| 8 | - | - | - | - | - | - | 0 2 | 31 33 |