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Abstract

In this study we describe the design and application of an automated classification system that utilizes artificial
intelligence to corroborate the finding that Gunnison’s prairie dogs have different alarm calls for different species of
predators. This corroboration is strong because it utilizes an entirely different analysis technique than that used in the
original research by Slobodchikoff et al. [Slobodchikoff, C.N., Fischer, C., Shapiro, J., 1986. Predator-specific alarm
calls of prairie dogs. Am. Zool. 26, 557] or in subsequent study done by Slobodchikoff et al. [Slobodchikoff, C.N.,
Kiriazis, J., Fischer, C., Creef, E., 1991. Semantic information distinguishing individual predators in the alarm calls
of Gunnison’s prairie dogs. Anim. Behav. 42, 713–719]. The study described here also is more completely automated
than earlier study in this area. This automation allowed a large volume of field data to be processed where all
measurements of relevant parameters were performed through software control. Previous study processed a smaller
data set and utilized manual measurement techniques. The new classification system, which combines fuzzy logic and
an artificial neural network, classified alarm calls correctly according to the eliciting predator species, achieving
accuracy levels ranging from 78.6 to 96.3% on raw field data digitized with low quality audio equipment. © 2000
Elsevier Science B.V. All rights reserved.

Keywords: Acoustic; Alarm calls; Fuzzy logic; Neural nets; Prairie dogs

www.elsevier.com/locate/behavproc

1. Introduction

An increasing body of evidence shows that the
alarm calls of some animals contain meaningful
information of a semantic nature. Semantic con-
tent in predator-specific alarm calls has been
found in the vocalizations of some ground squir-
rels (Owings and Virginia, 1978) and in vervet

monkeys (Seyfarth et al., 1980). The California
ground squirrel has a different call for aerial
predators than it does for terrestrial predators.
Vervet monkeys have different alarm calls for
several species of predators, such as the leopard,
martial eagle, and python. Semantic information
has also been found in the alarm vocalizations of
dwarf mongooses (Beynon and Rasa, 1989), and
in the alarm calls of chickens (Gyger et al., 1987),
lemurs (Pereira and Macedonia, 1991), and red
squirrels (Greene and Meagher, 1998).* Corresponding author.
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A diversity of information of a semantic nature
has been associated with Gunnison’s prairie dog
alarm calls. This includes, (1) different alarm calls
for different species of predators (Slobodchikoff
et al., 1986; Kiriazis, 1991); (2) information about
the size, shape, and color of different individuals
within a predator species (Slobodchikoff et al.,
1991); (3) information related to the direction and
speed of approach of a predator (Kiriazis, 1991);
(4) and dialects in alarm calls between colonies
(Slobodchikoff and Coast, 1980; Slobodchikoff et
al., 1998).

In this study we describe the design and appli-
cation of an automated system of analysis that is
used to corroborate the finding that Gunnison’s
prairie dogs have different alarm calls for differ-
ent species of predators. Earlier techniques that
demonstrated the existence of these predator-spe-
cific alarm calls were subject to various limita-
tions. For example, using observational
techniques, Kiriazis (1991) demonstrated that
alarm calls, recorded in the presence of predators
of various types, elicit predator-specific behaviors
in prairie dogs that hear the recordings played
back in the absence of any predators. Such obser-
vational techniques strongly suggest that there
exist different alarm calls for different species of
predators. However, these techniques do not
provide quantitative or structural insights into the
nature of the alarm calls under investigation.

Evidence for predator-specific alarm calls was
also demonstrated by Slobodchikoff using a tech-
nique that relies on the analysis of audio wave-
forms (sonograms) generated by sophisticated
signal processing programs (Slobodchikoff et al.,
1991). In this methodology, a number of at-
tributes of sonograms made from the prairie dog
alarm calls were measured manually. These hand
measurements were analyzed using multivariate
statistics in order to demonstrate the existence of
predator-specific alarm calls. Manual measure-
ment techniques are time consuming and they
tend to make the analysis of large numbers of
alarm calls impractical. This limitation invites
criticisms related to any statistical analysis that is
tied to the measurements. Manual measurements
are also imprecise and open the possibility that
human bias is introduced into the measurements.

Both of these weaknesses of manual measurement
techniques can be overcome by enhanced automa-
tion of the experimental procedure. However,
even if the methodology used by Slobodchikoff
was more completely automated, the analysis
technique of multivariate statistics itself presents
some limitations that must be addressed. Al-
though capable of identifying important alarm
call parameters and, to some degree, their relative
importance, multivariate statistics cannot easily
be used to ascertain the manner in which these
factors encode information in animal vocaliza-
tions. Since ultimate proof of the actual level of
complexity of animal communications must rely
on some exposition of the manner in which these
communications encode information, this is a se-
rious limitation that must be overcome.

The automated classification system described
in this study addresses all of the limitations just
discussed. Using a sophisticated numeric-process-
ing environment, the new system of analysis is
implemented as a fully automated software pack-
age where all measurements are made under soft-
ware control. In addition to this, the power of
fuzzy logic and artificial neural networks is used
to analyze and classify the prairie dog alarm calls
with high accuracy into predator-specific classes.
Furthermore, the new system promises to support
more sophisticated future research into the man-
ner in which information is encoded in alarm
calls. Fuzzy logic is a system of mathematics that
allows the vagueness of linguistic concepts to be
represented by sets with imprecise boundaries
(Zadeh, 1965; Ross, 1995). In fuzzy logic, the
membership of an element in a set does not
always signify complete inclusion or complete ex-
clusion but can assume values between these two
extremes. Working with the degrees of member-
ship allows the imprecision inherent in natural
language to be represented and it supports a form
of approximate reasoning that attempts to model
the way human beings reason. Artificial neural
networks refer to computer programs and also to
actual hardware devices that have been designed
to emulate some of the functionality and at-
tributes of human neural networks (McCulloch
and Pitts, 1943; Rumelhart et al., 1986). In artifi-
cial neural networks the information is distributed
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among the many links that connect the simple
processing units contained in the network. A net-
work gains information (i.e. trained) by example
as data sets are repeatedly presented to it. During
this training period the network itself adjusts the
network’s links in order to retain information
gained from the inputs. A network continues to
be trained in this manner until it is able to func-
tion at an acceptable level of performance.

2. Materials and methods

The research described in this study used tape
recordings of Gunnison’s prairie dog alarm calls
obtained over a period of 10 years (1988–1997) at
two separate prairie dog colonies, both described
in Slobodchikoff et al. (1991). Recordings were
made using a Sennheiser ME-88 directional mi-
crophone and two different models of cassette
tape recorders, an Uher model 160 recorder and a
Sony TC-D5PRO II recorder. For the purposes of
this analysis, we used calls from 25 individual
prairie dogs for each of the following predators:
humans, represented by seven different individu-
als; red-tailed hawks, represented by 16 different
individuals; domestic dogs, represented by eight
different individuals; and coyotes, represented by
five different individuals. Because the alarm call
data were obtained over a 10-year period, we
sampled calls from multiple generations of prairie
dogs.

Copies of these data recordings were digitized
using a generic sound card and software package
in an IBM compatible PC with an Intel 486
processor. The sound card had 16-bit resolution
and sampled data at 44 100 Hz. Following the
digitization process a standard ‘cut and paste’
sound editor that was part of the package was
used to manually extract the individual prairie
dog ‘barks’ and save them in separate files. These
files of single alarm call barks formed the library
of files that was used for all of the classification
tests described in this study. The files associated
with a given recording session and species of
predator were all given the same root name; each
individual file with the same root name was given
a unique index value. For example, one series of

files that contain alarm call barks issued in the
presence of a dog named Moby are named
moby1, moby2, moby3, etc. while another series
of calls recorded in the presence of a hawk are
named aerial1, aerial2, aerial3, and so on. After
completing this manual process of creating sepa-
rate files, with each file containing an individual
alarm call bark, all subsequent data manipulation
was performed using a system of computer pro-
grams created by one of the authors. These pro-
grams were implemented using the
high-performance numeric computation software
called MATLAB and the neural network toolbox
associated with MATLAB. Classification tests
were run on all combinations of the different
predator species associated with the alarm calls.
In other words, all six combinations of two differ-
ent species were tested, all four combinations of
three different predator species were tested, and
data associated with all four species was tested.

The automated classification system first pre-
processes each of the prairie dog alarm calls and
then trains and tests a neural network. In the
preprocessing stage, the frequency ratios con-
tained in each alarm call bark are determined and
then vectors of fuzzy values are created that char-
acterize each alarm call bark. These vectors are
used as input for the training and testing of the
neural network. A block diagram of the auto-
mated classification system is given in Fig. 1. The
main functional units of the automated classifica-
tion system are described in detail below.

2.1. Determination of the frequency ratios
contained in each alarm call bark

When an experiment was to be run that at-
tempted to classify a targeted combination of
predator-specific alarm calls, each file used in that
experiment was converted from a simple time
domain recording of an alarm call bark into a
matrix of sound frequencies contained within that
bark. This conversion process was implemented in
the following way. Each digitized data file repre-
senting an alarm call bark was divided into parti-
tions of 256 data points each. Since alarm calls
were recorded at a rate of 44 100 samples per s,
each bark was effectively divided into a number of
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time periods of 0.0058 s each. The fast fourier
transform algorithm was then used to transform
each partition of data points (i.e. each time pe-
riod) into a normalized power spectrum of the
sound frequencies that were expressed during that
time period. Thus, each alarm call bark was trans-
formed into a matrix of values representing sound
frequencies where each column in the matrix rep-
resented a different time period in the bark and
recorded all of the frequencies that were expressed
within that time period.

Once the matrix of frequencies was obtained, a
complete collection of frequency ratios was com-
puted in the following way. For each time period
(matrix column) the set of frequency ratios was
computed by dividing each frequency expressed in

Fig. 2. Steps involved in transforming an alarm call into a
collection of frequency ratios. In the time interval shown in the
figure, there are three frequencies contained within the inter-
val. To obtain the frequency ratios, each frequency within that
time interval is divided into every other lesser frequency.

Fig. 1. Diagram of the automated classification system, show-
ing the steps involved in processing and classifying alarm calls.
Each alarm call becomes a component or vector of the data-
base of fuzzy frequency ratio vectors. A part of this database
is used for training a backpropagation neural network, and
another part of the database is used for the classification tests
with the trained neural network.

that time period into all other smaller frequencies
expressed within that period. Thus, every time
period was represented by a set of frequency
ratios, all of which lay within the range of values
0–1. The frequency ratios computed in this man-
ner for each time period were then combined into
one total set of values that represented the entire
alarm call bark that was being analyzed. Fig. 2
gives a simplified illustration of this process.

2.2. Creation of 6ectors of fuzzy 6alues that
characterize alarm call barks

Traditional or ‘crisp’ logic only allows for the
elements of a given universe to belong to sets
within that universe completely or not at all. An
element x either belongs to set S completely and is
said to have membership value 1 in that set, or it
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does not belong to set S at all and is said to have
membership value 0 in that set. Unlike crisp logic,
fuzzy logic allows for elements to possess partial
membership in sets. One could think of such
membership as being represented by a number in
the range of values 0–1. At first this might seem
strange, but in fact everyday logic is often more
fuzzy than crisp. For example, a person that is 6
ft tall might be considered to have complete mem-
bership (i.e. have membership value 1) in the set
of tall persons. Another person that is 5 ft 11 in.
tall is smaller but still possesses the attribute of
tallness and might be given a membership value of
0.95 in the set of tall persons. In other words, the
second person has the attribute of tallness to
degree 0.95. This example helps one to see that
fuzzy sets are useful for characterizing the degree
to which something possesses an attribute of in-
terest. In the classification system being described
in this study, fuzzy logic was used to characterize
the degree to which different ranges of frequency
ratios existed in each alarm call bark.

In order to characterize the collection of fre-
quency ratios computed for each alarm call in a
meaningful way, each collection was divided into
21 sub-ranges of ratios. Once this division was
made, a vector of 21 fuzzy membership values was
computed. Each membership value in the vector
represented the degree to which a corresponding
sub-range of frequency ratios approximated a
particular fuzzy frequency ratio.

To make this more explicit, consider that the
frequency ratios computed for a given bark lie in
the range of values 0–1. These ratios were divided
into 21 sub-ranges as indicated in Fig. 3. If the

entire spectrum of sub-ranges was shown in Fig.
3, there would be 19 of the larger overlapping
triangles (B–T) and two of the smaller right trian-
gles, one on each end of the diagram (A and U).
Each of these triangles encompasses a particular
sub-range of frequency ratios and represents a
membership function for a fuzzy set. For exam-
ple, triangle C in Fig. 3 represents the fuzzy
membership function ‘approximately 0.10’. Simi-
larly, each of the other membership functions
represents a fuzzy frequency ratio. The fuzzy
value corresponding to frequency ratio interval i
was computed using the following formula:

mi=gi*�(m1i, m2i, mNi)

where, mi, the fuzzy membership value for fuzzy
frequency ratio interval i ; m1i, the fuzzy member-
ship value for the first frequency ratio in interval
i ; mNi, the fuzzy membership value for the last
frequency ratio in interval i ; �, the maximum
function (the standard fuzzy union operator) gi,
(number of frequency ratios in interval i )/10.

A number of different formulations of the
equation given above were investigated. The equa-
tion given produced the best results.

Each vector of fuzzy membership values com-
puted represented a distribution of fuzzy fre-
quency ratios that was used to represent an
individual bark in a prairie dog alarm call; these
were the values that were provided as input to the
neural network. Each fuzzy frequency ratio distri-
bution formed a particular signature that repre-
sented the presence of a specific combination of
fuzzy frequency ratios. Therefore, the overall clas-
sification system created is a fuzzy-neural classifier
because the input to the neural network was a
vector of fuzzy values.

2.3. Training and testing of a neural network
using the computed 6ectors of fuzzy 6alues

After the set of alarm call barks selected for a
given classification test were transformed into vec-
tors of membership values for fuzzy frequency
ratios as described earlier, the barks were divided
into two roughly equal-sized sets of vectors. One
set was used to train a neural network how to
identify which predator was associated with each

Fig. 3. Graph of fuzzy sets (triangles shown on graph) that
partition the range of frequency ratios (given on the x-axis)
into subsets. A line extended vertically from a particular
frequency ratio found along the x-axis intersects a fuzzy set.
The corresponding value of this point of intersection on the
y-axis represents the membership value (m) of that frequency
ratio in that fuzzy set.
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Fig. 4. A simplified diagram of the neural network used to
classify alarm calls associated with all four species of preda-
tors.

layer of networks that classified alarm call barks
vocalized in the presence of three different species
of predators.

The input layer received the 21 fuzzy values
that represented the ranges of frequency ratios as
explained earlier. The values placed on the input
nodes were passed on weighted connections to the
neurons in the hidden layer. Each of the input
nodes was connected to each node in the hidden
layer and each hidden layer node was connected
to each node in the output layer. Each hidden
layer node applied its sigmoid transfer function to
the weighted sum of the values sent to it by the
input nodes. This resulted in the generation of
new values at the output connection of the hidden
layer nodes. The values generated by the hidden
layer nodes were sent directly to the output nodes.
Similarly, each output node applied its linear
transfer function to the weighted sum of the input
values it received from the hidden layer neurons.
This generated a new set of values at the outputs
of the output layer neurons. The output layer
nodes were used to classify alarm call barks into
different predator species. Each output node rep-
resented a particular species; the output node with
the largest value for a given input vector named
the species associated with that input. A simplified
diagram of the neural network used to classify
alarm calls associated with all four species of
predators is given in Fig. 4.

In the neural networks, the information that
linked input alarm calls to predator species was
maintained in a distributed fashion in the weights
that were associated with the connections in the
network. A training algorithm was used to adjust
the weights associated with each of the connec-
tions in the network. Each training cycle of the
network caused the connection weights to be al-
tered in such a way that the sum of squared errors
of the network neurons were minimized. The
changes in the weights were computed using the
derivative of the square of the error at each
neuron where the error was the difference between
the expected output of the neuron and the actual
output. This training algorithm is called the back-
propagation gradient descent technique (Rumel-
hart et al., 1986) An adjustment of the connection
weights represents a modification of the informa-

alarm call bark. This data set was called the
training set. The other data set was used to test
the trained network for its ability to correctly
guess which predator was associated with each
alarm call bark. This second set was called the
testing set. The two sets were disjoint which
means that none of the vectors used to test the
accuracy of the neural network were used to train
the network. The complete data set consisted of a
total of 359 alarm calls associated with humans,
171 associated with dogs, 275 associated with
coyotes, and 213 associated with hawks. Recall
that every alarm call bark was saved in a file
whose name had a unique index that was ap-
pended to a common prefix used to represent each
specific predator. The training set was composed
of alarm call barks in files with odd numbered
indices. The testing set came from files with even
numbered indices.

The neural networks used to classify alarm call
barks were feedforward networks. A feedforward
network allows signals (values) to travel only in
one direction in the network from the input layer
to the output layer, no feedback is allowed. All of
the tests described in this study were executed
with neural networks that used 21 neurons in the
input layer and 50 neurons in the hidden layer.
The hidden layer size of 50 neurons gave the
optimum combination of shortest training time
and best accuracy. The number of different spe-
cies-specific classes being investigated in a given
test determined the number of neurons in the
output layer of the network used in that test. For
example, three neurons were used in the output
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Table 1
Summary information for all combinations of the different
predator species

Accuracy (%)Species classified Training
sessions

Humans, dogs 200087
Humans, coyotes 89 1500

1500Humans, hawks 95
200088Dogs, coyotes
2000Dogs, hawks 96
250090Coyotes, hawks
3000Humans, dogs, coyotes 79
350085Humans, dogs, hawks
2500Humans, coyotes, hawks 86
350085Dogs, coyotes, hawks

Humans, dogs, coyotes, 79 5000
hawks

a classification experiment for a specific combina-
tion of target species. For example, the second
row of Table 1 represents the classification test
that trained a backpropagation neural network to
distinguish between alarm call barks issued in the
presence of humans and alarm call barks issued in
the presence of coyotes. The network was able to
distinguish between the alarm calls with an accu-
racy of 89%. Furthermore, it took 1500 training
sessions to achieve this accuracy.

A contingency table showing the results of the
classification of alarm calls associated with all
four species of predators is given in Table 2. The
column labels represent the species that were
‘guessed’ by the neural network to be associated
with the alarm calls tested. The row labels repre-
sent the actual species associated with the alarm
calls tested. For example, the cell associated with
row ‘dog’ and column ‘hawk’ gives data related to
the number of times the neural network incor-
rectly associated a hawk with alarm calls vocal-
ized in the presence of a dog. The diagonal cell in
row ‘human’ and column ‘human’ gives data re-
lated to the number of times the neural network
correctly associated a human with alarm calls
vocalized in the presence of a human. Each cell in
Table 2 contains two values. The first value gives
the observed count for that cell and the parenthe-
sized value gives the expected count for that cell if
the neural network had been selecting randomly
among the four species. The values show that the
classification results are highly significant (x2=
793, df=9, PB0.005).

tion embodied in the network. Weight adjustment
was scheduled to continue iteratively until either
no error occurred when classifying input vectors
or until the training algorithm no longer im-
proved the classification accuracy of the network.
In none of the classification experiments did the
network reach 100% accuracy. Therefore, in each
test the iterative training regime stopped itself
when no further improvement was seen in three
consecutive training sessions.

3. Results

Table 1 provides a summary of information for
all the classification tests run. Each row represents

Table 2
Contingency table for classification of alarm calls for all the four predator speciesa

Species associated by neural network with alarm callsActual species associated with alarm calls

Human Dog Coyote Hawk

154 (70)Human 12 (31) 10 (41) 2 (36)
62 (15)18 (34) 3 (18)Dog 4 (20)

10 (28)Coyote 99 (32)14 (54) 14 (24)
13 (42) 1 (19)Hawk 4 (24) 88 (21)

a Each cell contains the observed value and the expected value in parentheses. These results are highly significant (x2=793, df=9,
PB0.005).
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4. Discussion

The results presented above show highly accu-
rate classifications of species-specific alarm calls.
The highest classification accuracy of 96% was
obtained between dog and hawk calls. The lowest
accuracy of 79% was obtained when classifying all
four species together and when classifying hu-
mans, dogs, and coyotes. All other classification
tests were between 85 and 95% accurate.

The classification system described in this study
provides strong corroboration that Gunnison’s
prairie dogs have different alarm calls for differ-
ent species of predators. The corroboration is
strong because it comes through the use of an
entirely different analysis technique than that used
in the original research by Slobodchikoff et al.
(1986) or in subsequent study done by Slobod-
chikoff et al. (1991). The study described here also
is more completely automated than earlier study
in this area. This automation allowed a large
volume of field data to be processed where all
measurements of relevant parameters were per-
formed through software control. Previous study
processed a smaller data set and utilized manual
measurement techniques. A further advantage of
the new system of analysis is that it utilizes power-
ful tools of artificial intelligence: fuzzy logic and
neural networks. Neural networks in particular
help to establish a plausible link between what
prairie dogs are actually experiencing or capable
of experiencing, and what the research tool (a
neural net) is demonstrating. If a simple primitive
artificial neural network can distinguish, with high
accuracy, alarm calls issued in the presence of
different species of predators, it seems to be rea-
sonable to assume that the organic neural net-
works of Gunnison’s prairie dogs are capable of
making the same discrimination.

It is surprising that the experimental results
presented in this study demonstrated such high
accuracy. The original alarm call field recordings
were made over a period of years in outside
locations at two different prairie dog colonies.
There were various sources of noise (including
wind, trains, etc.) encountered during the taping
sessions which resulted in recordings of varying
quality. Additional degradation in sound quality

came from the fact that the digitized alarm calls
were made from copies of the original field
recordings and these copies were played into a PC
using a low-quality tape recorder. Thus, no ex-
traordinary measures were taken to assure high
fidelity sound reproduction. In addition to using
noisy field data digitized with low quality audio
equipment, it should be pointed out that no data
filtering was done. The automated classification
system utilized all the individual alarm call barks
that were selected for a given classification test; no
data was thrown out. Not only can one assume
that some of the alarm call barks were of poor
quality due to noise etc. but it is entirely possible
that not all alarm call barks were intended pri-
marily to specify the species-specific information.
For example, it was mentioned earlier that prairie
dog alarm calls have been shown to possess other
types of information such as size, shape, and color
of individual predators as well as direction and
approach of a predator.

The use of a large number of alarm call barks
recorded over a period of several years in varying
conditions at two separate prairie dog colonies
helped to guard against training the neural net-
work to recognize something other than species
specific information. For example, if the same
external sounds or noise were present each time
alarm call barks were recorded in the presence of
dogs, the neural network might be recognizing
that external noise and not be identifying preda-
tor specific information related to dogs. Another
possible source of non-species specific information
could be the characteristics of the vocalizations of
specific prairie dog individuals. Reby et al. (1997)
showed this capability of neural networks when
they trained them to recognize the individual vo-
calizations of four fallow deer. Given the data set
used for the work described in this study, it is
unlikely that recognition of individual prairie dog
vocalizations could explain the high accuracy of
the classification results.

It is interesting, and not entirely surprising, that
frequency ratios have been found to be an impor-
tant factor in classifying predator-specific prairie
dog alarm calls as described in this study. In
music, the ratio of the frequencies of musical
notes is highly significant because it defines a
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relationship between those notes that is immedi-
ately recognizable when one hears the notes.
Striking examples of this are the notes of the same
name, which differ in frequency by powers of two.
Consider also that two chords, for example, the
sixth and seventh chords of a given key, can
contain several identical notes but differ only in
one specific note and yet still produce clearly
distinct harmonies. It seems quite possible that
certain combinations of frequency ratios might
form patterns that could be used to identify the
distinguishable units or phonemes of an acoustic
communication system.

The work presented in this study strongly sug-
gests that frequency ratios are related in some
way to the manner in which information is en-
coded in Gunnison’s prairie dog alarm calls. Es-
tablishing the importance of this parameter was
one of the major outcomes of the work described
here. However, the exact way in which the infor-
mation is encoded in Gunnison’s prairie dog
alarm calls and the level of linguistic complexity
of these calls are clearly not addressed in this
study. Additional work is needed to address these
difficult issues. Nonetheless, part of the signifi-
cance of the classification system presented in this
study is that, it provides a system of analysis that
can be used to investigate these more difficult
questions. This system draws on powerful tech-
niques of artificial intelligence that can be ex-
panded to examine the issue of how and at what
level of complexity information is encoded in
animal alarm calls.
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