Organic Chemistry Interactive Notes by jim.maxka@nau.edu

Chapter 2: The Nature of Bonds and Structure of Organic Molecules

Bonds and Polarity. Bond polarity is based on the difference of the electronegativity of each individual atom in a bond. For the hypothetical bond A-B, the extreme picture would be either ionic or covalent. In reality many bonds are somewhere in between.

What is the definition of electronegativity?

What is a dipole? A dipole μ is proportional to the charge x charge x distance between them. The dipole moment is drawn as a crossed arrow with the direction going towards the positive end of the molecule. Here are some examples:

Ammonia : NH_3 On the left, there is the dipole arrow. Right, there is charge density picture with red indicating negative charge and blue indicating positive.

What is the difference between a non-polar, polar-covalent and ionic bond? Non-polar covalent Polar covalent Ionic Metals and Non-Metals

Metals tend to be electropositive – easy to lose electrons. These have low EN values.

Non-metals (called main group elements) approach the most electronegative element F. H is not really a metal. It is compatible with the main group elements. C is average for a non-metal.

Table taken from Bill Reusch, http://www.cem.msu.edu/~reusch/VirtualText/intro2.htm#strc2

Classify these ficticious bonds as non-polar or polar and if polar show the d+ and d-.

Polar	A B	$EN_A >> EN_B$
Polar	A B	$EN_B >> EN_A$
Non-polar	A B	$EN_A \sim EN_B$ (usually < .45)

For some real bonds. Classify as non-polar or polar and if polar show the d+ and d-.

C – N	C H	B – H	AI – H	C – O	C – F	Li H
F F	B – Cl	Li – Al	AI – O	B–O	Li – Li	C – Li

Molecular Polarity and Intermolecular Forces

To understand the overall polarity of a molecule, the polarity of each bond and the arrangement of the bonds in the molecule have to be considered.

For a molecule with non-polar bonds, it's easy to see that the molecule overall is non-polar. Consider these molecules:

How about molecules with polar bonds: Here the polar vectors must be added based on the shape. Here are some simple examples.

Polar Covalent Bonds and Polar Molecules.

o = c = 0

Just having polar bonds does not make the molecule polar. Consider these examples

Shape

Intermolecular Forces:

Just as there are attractions within molecules to hold the atoms together, there are forces between molecules that give the ensemble of molecules their physical properties:

Physical property	Low	High
Melting point	Strong Weak Forces	Strong Weak Forces
Boiling point	Strong Weak Forces	Strong Weak Forces

There are 3 main classes of intermolecular forces:

- **Dipole-Dipole** (permanent)
- H-Bonding: The elements N, O, and F can share H's between them. This is a very special force.
- London, Van der Waals, or Dispersion (induced dipole)

Relative magnitudes of forces

Attractive Force	Covalent bonds	H-bonding	Dipole-dipole	London forces
Energy	~100 kcal/mole	5-10 kcal/mole	< 5 kcal/mole	< 1 kcal/mole

Picture from http://scidiv.bcc.ctc.edu/wv/08/0008-0012-interforce.htm

Induced Dipole:

See http://www.chm.bris.ac.uk/webprojects2003/swinerd/forces/forces.htm

Shape and Size

Since the interactions between the two atoms or molecules depends on the surface area between the two bodies, the **shape** is important:

Organic Chemistry Interactive Notes by <u>jim.maxka@nau.edu</u> **H-Bonds** Boiling points of compounds containing N, O, F—H bonds compared to analogs.

Temperature (° Celsius)	100° 0° -100° -200°	H2O HF NH3 CH4	H ₂ S PH ₃ SiH ₄	H2Se AsH1 HBr GeH4	H2Te SbH3 HI SnH4	R	R H H H R H H H H R	R R R R R R R R R R R	R Hydro in Al Wa H O R R H H C R H	ogen Bonding Icohols and Iter (R=H)
		20	35	so Molecular Weight	130	R, , , , , , , , , , , , , , , , , , ,	H Hydroger to an J	Bonding Amine	Hydrogen Bon to a Carbonyl C	iding Group
				Compound	Formu		NA - 1 14/1	Bailing Daint	Malting Daint	
				compound	i onnu	la	WOI. WT.	Bolling Point	Meiting Point	
				dimethyl ether	CH ₃ OC	H ₃	46	-24 °C	-138 °C	
				dimethyl ether Ethanol	CH ₃ OC CH ₃ CH ₂	:H₃ :OH	46 46	-24 °C 78 °C	-138 °C	
				dimethyl ether Ethanol Propanol	CH ₃ OC CH ₃ CH ₂ CH ₃ (CH ₂)	20H)20H	46 46 60	-24 °C 78 °C 98 °C	-138 °C -130 °C −127 °C	
				dimethyl ether Ethanol Propanol diethyl ether	CH ₃ OC CH ₃ CH ₂ CH ₃ (CH ₂) (CH ₃ CH ₂	2)2OH	46 46 60 74	-24 °C 78 °C 98 °C 34 °C	−138 °C −130 °C −127 °C −116 °C	
				dimethyl ether Ethanol Propanol diethyl ether propyl amine	CH ₃ OC CH ₃ CH ₂ CH ₃ (CH ₂) (CH ₃ CH ₂) CH ₃ (CH ₂)	2)2OH 2)2OH 2)2OH 2)2O 2NH2	46 46 60 74 59	-24 °C 78 °C 98 °C 34 °C 48 °C	−138 °C −130 °C −127 °C −116 °C −83 °C	
				dimethyl ether Ethanol Propanol diethyl ether propyl amine Methylaminoethane	CH ₃ OC CH ₃ CH ₂ CH ₃ (CH ₂) (CH ₃ CH ₂) CH ₃ (CH ₂) CH ₃ CH ₂ N	20H 2)2OH 2)2OH 2)2O 2NH2 HCH3	46 46 60 74 59 59	Boiling Point -24 °C 78 °C 98 °C 34 °C 48 °C 37 °C	−138 °C −130 °C −127 °C −116 °C −83 °C	
				dimethyl ether Ethanol Propanol diethyl ether propyl amine Methylaminoethane Trimethylamine	CH ₃ OC CH ₃ CH ₂ CH ₃ (CH ₂) (CH ₃ CH ₂) CH ₃ (CH ₂) CH ₃ (CH ₂) (CH ₃ CH ₂ N) (CH ₃) ₃	20H 2)2OH 2)2OH 2)2O 2NH2 HCH3 2)N	Wol. Wt. 46 60 74 59 59 59	-24 °C 78 °C 98 °C 34 °C 48 °C 37 °C 3 °C	−138 °C −130 °C −127 °C −116 °C −83 °C −117 °C	
				dimethyl ether Ethanol Propanol diethyl ether propyl amine Methylaminoethane Trimethylamine Ethylene glycol	CH ₃ OC CH ₃ CH ₂ CH ₃ (CH ₂) (CH ₃ CH ₂) CH ₃ (CH ₂) CH ₃ CH ₂ NI (CH ₃) ₃ HOCH ₂ CH	14 14 15 15 16 16 17 17 17 17 17 17 17 17 17 17	46 46 60 74 59 59 59 62	Boiling Point -24 °C 78 °C 98 °C 34 °C 48 °C 37 °C 3 °C 197 °C	−138 °C −130 °C −127 °C −116 °C −83 °C −117 °C −13 °C	
				dimethyl ether Ethanol Propanol diethyl ether propyl amine Methylaminoethane Trimethylamine Ethylene glycol Acetic acid	CH ₃ OC CH ₃ CH ₂ CH ₃ (CH ₂) (CH ₃ CH ₂) CH ₃ (CH ₂) CH ₃ CH ₂ N (CH ₃) ₃ HOCH ₂ CH	12 13 14 14 15 15 15 15 15 15 15 15 15 15	Wol. Wt. 46 46 60 74 59 59 62 60	Boiling Point -24 °C 78 °C 98 °C 34 °C 48 °C 37 °C 197 °C 118 °C	-138 °C -130 °C -127 °C -116 °C -83 °C -117 °C -13 °C 17 °C	

Table taken from Bill Reusch, http://www.cem.msu.edu/~reusch/VirtualText/physprop.htm#exp4

Cutout of the H-bonding in ice - responsible for the interesting structure of snow flakes

Organic Chemistry Interactive Notes by jim.maxka@nau.edu

Solubility: In general like dissolves like. Polar with polar. Non-polar with non-polar.

What functional groups are exceptions?

Classifying Polarity in Bonds in terms of Valence Bond Models Formal Charges

Here is the acid dissociation reaction of the following oxoacids. You must supply the formal charges. Make sure there is charge balance both on molecule and in the reaction. Nitric Acid HNO₃ dissociates to make nitrate.

Sulfuric Acid H_2SO_4 dissociates to make hydrogensulfate.

Resonance

(1) Resonance repairs inadequacy of Lewis Structures.

Experimentally ozone and SO₂ is bent (bond angle 120°) and has equal length S--O bonds (143.2 pm). **Resonance hybrids** (the two structures) are always represented by a **double headed arrow**. Draw the resonance structures for cyanate, CNO^(·) Note formal charges.

- What does this imply about the bond order of these molecules? Which structure is more important? Why?
- (2) Resonance can be used to show molecular properties:

(3) Wacky resonance structures do not have much effect.
○ ⊕
○ : ←→ : ○= ○

Which structures of azide, N₃ are important contributors? Which ones are not?

Resonance Summary

Resonance structures involve molecules with the same molecular structure and number of electrons. Resonance hybrids have different types of electronic localization.

The following factors are important in evaluating the contribution each of these canonical structures makes to the actual molecule.

- 1. The number of covalent bonds in a structure. (The greater the bonding, the more important and stable the contributing structure.)
- 2. Formal charge separation. (Other factors aside, charge separation decreases the stability and importance of the contributing structure.)
- 3. Electronegativity of charge bearing atoms and charge density. (High charge density is destabilizing. Positive charge is best accommodated on atoms of low electronegativity, and negative charge on high electronegative atoms.)

Based on http://www.cem.msu.edu/~reusch/VirtualText/intro3.htm#strc7

Practice: For the concentration of the concentratio	mpounds and ions listed below, write Lewis / Kekulé structures for as many reasonable ou can. H
Formate Anion	HCO ₂ ⁽⁻⁾
Nitromethane CH ₃ N	O ₂
Methyl Nitrite	CH₃ON=O
Diazomethane	CH ₂ =N=N
Considering the reso the greatest resonan	nance hybrid forms written here, which three of these compounds or ions will exhibit ce stabilization?

Practice: Reconsider the resonance of HNO_3 , HNO_2 , and H_2SO_4 and their anions. Which is the best structure?

Organic Chemistry Interactive Notes by <u>jim.maxka@nau.edu</u> Acid/Base chemistry is based on acid dissociation: We talk about Ka and pKa. HA \longrightarrow H⁺ + A⁻

 $Ka = [H^+] [A^-]/[HA]$ in general products / reactants. Why don't we talk about pK_b?

When is the ratio > 1? When is the ratio < 1? What about the ΔG ? Remember ΔG = -RTInKa When is the ratio > 1? When is the ratio < 1?

The Ka of a strong acid is 10^{+x}

pKa Acidities of Some Common Hydrides			
4	5	6	7
CH3-H ca. 50	NH2-H 34	HO-H 15.74	F-H 3.2
		HS-H 6.97 (pK1)	CI-H -3
		HSe-H 3.8 (pK1)	Br-H -6
		HTe-H 2.6 (pK1)	I-H -7

pKa of neutral hydrides above and selected charged compounds below.

NH₄⁽⁺⁾ 9.24 OH₃⁽⁺⁾ -1.74 S-H⁽⁻⁾ 15 (pK2) . Se-H⁽⁻⁾ 11 (pK2) http://www.cem.msu.edu/~reusch/VirtualText/suppmnt2.htm#top4 The main X-H bonds in organic chemistry are C-H N-H. O-H. Bank them in acidity

The main X-H bonds in organic chemistry are C-H, N-H, O-H. Rank them in acidity:

Now let's look at the acidity of H in respect to X-H bond. With respect to elements, what determines the acid strength? ______.

Make sure that you understand this order and what the pKa means. C-H depends on the electronic state of C? How do we classify these hybrid states?

Of the three states above, rank them in order of acidity: (p.287)

Typical pKa's of these acids are approximately CH₄ 50 H₂C=CH₂ 45 HC?CH 25

Now let's review magnitudes. 10^x

A photon of light is about 10 ^x m	The number of students in this OCHEM course is
A pore in a good water purifier is 10^{\times} m	about 10 [×]
The thickness of this paper is about 10^{\times} m	The thickness of McMurray is about 10 [×] pages
The length of a child is about 10^{\times} m	The federal deficit is about \$10 ×

Therefore, the pKa is positive or negative?

Unlikely acids

Most C-H acids are extremely weak.

$R_3C(sp^3)$ -H \checkmark H ⁺ + $R_3C(sp^3)$ Ka =	pKa=
$R_3C(sp^2)$ -H \checkmark H ⁺ + $R_3C(sp^2)$ Ka =	pKa=
$R_3C(sp)$ -H $\stackrel{\longrightarrow}{\longrightarrow}$ H ⁺ + $R_3C(sp)$ ⁻ Ka =	pKa=

We explain this based on the stability of the anion. The C-H species are all about the same stability, but the anion products are stabilized differently.

 $E \xrightarrow[R-H]{} R^{-}(sp^{3}) \xrightarrow[R^{-}(sp^{2})]{} Ka - 10^{35}$

N-H acids, What are some N-H acids? pKa's of N-H: pKa's of N⁺-H O-H acids? What are some O-H acids? pKa's of O-H: pKa's of O⁺-H

Equilibrium and predicting reaction

To calculate the extent of an acid base reaction is crucial.

Given pKa(HCI) = -5 and $pKa(H_2O) = 16$ and $pKa(NH_3) = 33$. $pKa(NH_4^+) = 9$. Note N-H can have more than one acid strength depending if N is neutral or positive. Write these reactions as ionization reactions.

- H₀O <=>
- NH₃ <
- $NH_4^+ \iff$

Strategy: (1) Find the acid on left and conjugate acid (CA) on right. (2) The reaction proceeds towards the side with the highest pKa.(3) The magnitude of the Keq = $10^{+ \text{ or } -(p\text{Ka1-pKa2})}$.

Left = -, Right = +. This can be derived algebraicly. Anyway you want, you're going to have to predict it. **Reactions**.

HO⁻ + H-CI \iff H-OH + Cl⁻ Which direction and what will be the magnitude of the K_{eq}?

(Acetylene)C-H + OH \leftarrow H-OH + HCC Which direction will this reaction go and what will be the magnitude of the K_{eq} ?

(Acetylene)C-H + $NH_2^{-} \longrightarrow H-NH_2 + HCC^{-}$ Which direction will this reaction go and what will be the magnitude of the K_{eq} ?

Practice:

- (1) Write the reaction of amide + ammonium and predict the direction.
- (2) Given methanol $CH_3OH pKa = 16$ and water pKa = 16. Why can NaOH not completely deprotonate methanol?
- (3) Hydride is a strong base, H:⁻. What is the CA of hydride? That acid has a pKa of 38.

Extension to Organic Chemistry.

Acid/Base	Organic Chemistry
Acid = H^+	Electrophile = E^+
Base => goes after H ⁺	Nucleophile => goes after Nucleus

Introduction to Arrow Pushing:

Always draw the arrows from LP or bonds towards nuclei.

- New bonds are *formed* whenever a pair of electrons in a bond or LP is pushed towards a new atom; the flow is from to +.
- A bond is *broken* when the electrons are pushed away from an atom in the bond. In the worked examples above note which bonds are formed and which bonds are broken.
- Note that formal charges often develop from arrow pushing. Formal charge is either calculated or just reasoned: if an atom gains an electron, it becomes -1; if an atom loses an electron, it becomes +1.

Additional practice is available from: <u>http://www.abdn.ac.uk/curly-arrows/</u>

Provide arrows. Identify the nucleophile and the electrophile.

Figures from *Steven A. Hardinger and Harcourt Brace & Company* Answers available at http://web.chem.ucla.edu/%7Eharding/tutorials/curvedarrows/curvedarrows.html