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Abstract. A two-dimensional visual device for description of the dispersion

of a multivariate data set in any dimension is the scale curve, a depth-based
method introduced by Liu (1990) and treated in detail by Liu, Parelius and

Singh (1999). It offers an appealing alternative to covariance matrix methods
and even provides an attractive new tool in the univariate case. To support

applications such as uniform confidence bounds for the population scale curve,

we develop some asymptotics. Uniform strong convergence of the sample scale
curve is established under broad conditions and uniform weak convergence

under somewhat restricted conditions. Open issues for further investigation
are discussed.

1. Introduction and Preliminaries

The geometric structure of a multivariate probabililty distribution F may be
described quite naturally in terms of its contours. To describe local structure,
contours are defined by equal levels of probability density. On the other hand, for
description in terms of outlyingness — a globally oriented feature — the contours
should be defined by a function whose value at any point measures in some sense
the outlyingness of that point. Equivalently, typical depth functions provide this
kind of contour. (For detailed general background on depth functions, see Liu,
Parelius and Singh, 1999, Zuo and Serfling [19], and Mosler [9], and see Serfling
[15] for a recent overview.) In some cases, these two approaches yield the same
family of contours, just indexed differently.

One useful application of the contours is to provide a nonparametric description
of the dispersion of F , using the volumes of the enclosed regions. In particular, for
depth-based contours based on a sample from F , Liu (1990) and Liu, Parelius and
Singh (1999) introduce the “scale curve”, which plots the enclosed volume as a
function of the corresponding probability weight p, for 0 < p < 1. This provides
a two-dimensional visual device for viewing or comparing multivariate datasets of
any dimension with respect to their dispersion. It offers an appealing alternative
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to covariance matrix methods and even provides a useful new tool in the univariate
case.

Of particular interest is the asymptotic behavior of the sample scale curve.
Does it consistently estimate the population scale curve? Suitably normed, does
it converge in distribution, so that, for example, uniform confidence bands may be
placed on the population scale curve? We establish uniform strong convergence of
the sample scale curve under quite broad conditions, and uniform weak convergence,
which poses some difficulties, under somewhat restricted conditions (extending a
limited previous investigation of Serfling [12]). We also treat certain variants of
the scale curve which can be handled in quite straightforward fashion, but which
sacrifice some intuitive appeal and are not preferred.

The technical difficulties apply only in the higher dimensional case, and for the
univariate case we obtain a complete treatment of asymptotics, both for the sample
scale curve and for a modified version related to the familiar “shorth” statistic.
This development is provided in Section 2. For the higher dimensional case, we
obtain in Section 3 uniform strong convergence for both the unmodified scale curve
and a modified version related to the familiar MVE estimator, but uniform weak
convergence only for the modified version. Complementary topics are discussed
in Section 4, including an approach toward weak convergence of the unmodified
sample scale curve. We complete the present section by formulating sample and
population scale curves, including modified versions, and discussing basic issues
concerning asymptotics.

Formulation of depth-based scale curves. Given F on Rd and a depth function
D(x, F ) which provides an F -based center-outward ordering of points x in Rd, a
corresponding family of contours is given by the boundaries of “central regions” of
form {x : D(x, F ) ≥ α}, α > 0. Letting CF,D(p) denote the central region having
probability weight p, the associated “scale curve” is then a plot of

VF,D(p) = volume(CF,D(p)), 0 < p < 1.

Since the depth-based central regions are nested, the scale curve has an appealing
interpretation as quantifying the expansion of the central regions with increasing
probability weight p.

As pointed out in Serfling [12], a scale curve VF,D(·) has the structure of a
generalized quantile function in the sense of Einmahl and Mason (1992). Given a
probability distribution F on Rd, a class A of Borel sets in Rd, and a real-valued
set function λ(A) defined over A ∈ A, they define the corresponding “generalized
quantile function” as

(1.1) UF (p) = inf{λ(A) : F (A) ≥ p, A ∈ A}, 0 < p < 1,

and establish weak convergence of an associated empirical process. With λ(A) given
by the volume of A, and A given by AF,D = {CF,D(p), 0 < p < 1}, we readily
obtain UF (p) = VF,D(p), the scale curve. That is, VF,D(p) has the representation

(1.2) VF,D(p) = inf{volume(A) : F (A) ≥ p, A ∈ AF,D}, 0 < p < 1.

Sample versions, and issues. A sample scale curve is defined by Vn,D(·), using
the volumes of the sample central regions CFn,D(p), with Fn the usual empirical
distribution based on a sample X1, . . . , Xn from F . Thus CFn,D(p) denotes the
smallest region of form {x : D(x, Fn) ≥ α} having Fn-probability ≥ p. Via (1.2)



ON SCALE CURVES FOR NONPARAMETRIC DESCRIPTION OF DISPERSION 3

we may write

(1.3) Vn,D(p) = inf{volume(A) : Fn(A) ≥ p, A ∈ AFn,D}, 0 < p < 1.

On the other hand, the sample version of (1.1) considered by Einmahl and
Mason (1992) is given by

(1.4) Un(p) = inf{λ(A) : Fn(A) ≥ p, A ∈ A}, 0 < p < 1,

with A precisely as in (1.1), i.e., fixed and not random. Under regularity conditions
they establish weak convergence of the corresponding process

(1.5) n1/2 uF (p)−1 (Un(p) − UF (p)), 0 < p < 1,

with uF (p) a suitable normalizing function (typically the derivative of UF (p)). This
does not, however, cover the empirical process based on (1.2) and (1.3), which
involves an empirical choice of class A.

Of course, as seen in Serfling [12], for

(1.6) Ṽn,D(p) = inf{volume(A) : Fn(A) ≥ p, A ∈ AF,D}, 0 < p < 1,

and vF,D(p) the derivative of VF,D(p), the process

(1.7) n1/2 vF,D(p)−1 (Ṽn,D(p) − VF,D(p)), a ≤ p ≤ b,

defined over any closed interval [a, b] in (0, 1) satisfies the regularity conditions of
Einmahl and Mason (1992) and converges weakly to simply the Brownian bridge
over [a, b]. Practical implementation of this result, is thwarted, however, by the
unknown F being involved both in the class AF,D in (1.6) and in the normalization
vF,D(p) in (1.7).

Thus, in order to be able to exploit the weak convergence result for (1.5), we
consider modified scale curves defined by (1.2) using classes A not depending on F
(but possibly on D(·, ·)), i.e.,

(1.8) V ∗
F,D(p) = inf{volume(A) : F (A) ≥ p, A ∈ AD}, 0 < p < 1,

with sample version

(1.9) V ∗
n,D(p) = inf{volume(A) : Fn(A) ≥ p, A ∈ AD}, 0 < p < 1,

and we studentize, introducing uniformly consistent estimators for vF,D(p) or v∗F,D(p).
Here we carry out this approach with F restricted to be unimodal and elliptically
symmetric, in which case the density-based contours are ellipsoidal and so are the
depth-based contours for typical choices of D(·, ·). The corresponding modification
of (1.7) is seen to converge weakly to the Brownian bridge over [a, b]. This yields
asymptotic normality of the modified sample scale curve for any fixed p as well as
uniform confidence bands for the modified population scale curve over [a, b]. Such
modified scale curves are not based on nested regions, however, so that lack an
interpretation in terms of expanding central regions.

2. Scale curves in the univariate case

In Section 2.1 we formulate a very natural univariate scale curve having strong
intuitive appeal and establish its convergence properties. An alternative version
is treated in Section 2.2. Studentized versions are developed in Section 2.3, and
uniform confidence bands are discussed.
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2.1. A natural scale curve and its convergence properties. In the case
of univariate continuous F , several typical depth functions — the halfspace (Tukey),
simplicial, and spatial depths, for example — are equivalent and therefore generate
the same central regions, which in particular are the nested intervals

(2.1) CF (p) =
[
F−1

(
1
2
− p

2

)
, F−1

(
1
2

+
p

2

)]
, 0 ≤ p < 1,

which we note have equiprobable tails of weight p/2. For comparison, the projection
depth generates the family of intervals

[
F−1

(
1
2

)
− δ(p), F−1

(
1
2

)
+ δ(p)

]
, 0 ≤ p < 1,

where δ(p) is chosen for the given interval to have probability weight p. These
intervals also are nested.

Here we adopt the family (2.1) and, accordingly, take as scale curve

VF (p) = F−1

(
1
2

+
p

2

)
− F−1

(
1
2
− p

2

)
, 0 ≤ p < 1.

Both VF (·) and its sample version,

Vn(p) = F−1
n

(
1
2

+
p

2

)
− F−1

n

(
1
2
− p

2

)
, 0 ≤ p < 1,

have natural interpretations as quantifying the expansion of nested central regions
with increasing probability weight.

Convergence properties for the sample scale curve may be derived from results
for the classical sample quantile function F−1

n (·). We have

Theorem 2.1 (Uniform strong convergence). Let F−1 be continuous with finite
E(X−)1/r and E(X+)1/s for some r, s > 0. Then, for any [a, b] ⊂ (0, 1),

sup
p∈[a,b]

|Vn(p) − VF (p)| a.s.−→ 0.

Proof. The result follows immediately from

(2.2) sup
p∈[a′ ,b′]

|F−1
n (p) − F−1(p)| a.s.−→ 0

for any [a′, b′] ⊂ (0, 1), which itself follows from a strong convergence result of
Mason (1982) for F−1

n via

inf
p∈[a′,b′]

pr(1 − p)s sup
p∈[a′,b′]

|F−1
n (p) − F−1(p)|

≤ sup
p∈[0,1]

|pr(1 − p)s [F−1
n (p) − F−1(p)]| a.s.−→ 0.

�

Assuming that F has density f and defining the Gaussian process

GF (p) =
1

f(F−1(1
2

+ p
2
))

B

(
1
2

+
p

2

)
− 1

f(F−1(1
2
− p

2
))

B

(
1
2
− p

2

)
, 0 ≤ p < 1,

with B(·) denoting the standard Brownian bridge, we have
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Theorem 2.2 (Uniform weak convergence). Let f(F−1(p)) be positive and
continuous on an open subinterval of [0, 1] containing [a, b], with a < 1/2 < b.
Put p′ = min{1 − 2a, 2b− 1}. Then

{n1/2(Vn(p) − VF (p)), 0 ≤ p ≤ p′} d−→ {GF (p)), 0 ≤ p ≤ p′}.

Proof. The result follows by application of the functional delta method (e.g.,
van der Vaart, 1998, Thm. 20.8) in connection with weak convergence of the classical
quantile process n1/2(Fn(p) − F (p)) (e.g., Shorack and Wellner, 1986). �

For F symmetric, the scale curve becomes simply

VF (p) = 2
[
F−1

(
1
2

+
p

2

)
− F−1

(
1
2

)]
,

with derivative
vF (p) =

d

dp
VF (p) =

1
f(F−1(1

2 + p
2 ))

.

Then the covariance function of GF (·) becomes

Cov(GF (p1), GF (p2)) = vF (p1)vF (p2)(min{p1, p2} − p1p2)

and it follows that the normalized scale curve process converges weakly to simply
a Brownian bridge:

Corollary 2.1 (The symmetric case). Let F be symmetric and f(F−1(p))
positive and continuous on an open subinterval of [0, 1] containing [12 − a, 1

2 + a].
Then

{n1/2vF (p)−1(Vn(p) − VF (p)), 0 ≤ p ≤ 2a} d−→ {B(p)), 0 ≤ p ≤ 2a}.

2.2. An alternative scale functional. A related scale functional is given by
the length of the shortest interval having F -probability at least p,

V ∗
F (p) = inf{` > 0 : F (x + `) − F (x−) ≥ p}, 0 < p < 1.

In this case, however, the relevant intervals are not nested, so this curve lacks
the intuitive appeal of VF (p) as quantifying the expansion of central regions. The
sample version is

V ∗
n (p) = inf{` > 0 : Fn(x + `) − Fn(x−) ≥ p}, 0 < p < 1,

i.e., the length of the shortest interval containing at least a fraction p of the data.
In general we have

V ∗
F (p) ≤ VF (p), 0 < p < 1,

with equality in the case of F symmetric with density f positive and continuous on
(α, β) ⊆ (−∞,∞) and strictly increasing on (α, F−1( 1

2
)). (In this case equality of

the sample versions does not hold, however.) Under these conditions on F , weak
convergence of the process based on V ∗

n (·) has been investigated by Grübel (1988)
and Einmahl and Mason (1992), and the result of Corollary 2.1 applies with Vn(·)
replaced by V ∗

n (·), that is, these two scale curves are asymptotically equivalent in
distribution.

In particular, for p = 1/2, these weak convergence results cover two well-known
robust scale estimators, Vn( 1

2
) = the interquartile range and V ∗

n ( 1
2
) = the shorth,

respectively. The corresponding location estimators given by the midpoints of these
intervals behave quite differently with respect to asymptotic distribution, however,
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the former satisfying n1/2-convergence but the latter only n1/3-convergence. See
Grübel (1988) and Rousseeuw and Leroy (1988) for detailed discussion. Thus, in
comparison, the sample scale curve Vn(·) is somewhat more appealing than V ∗

n (·),
by virtue of its greater interpretability and its (infinitely) more efficient associated
location estimator.

2.3. Studentized versions and uniform confidence bands. Practical use
of these weak convergence results requires vF (p) to be replaced by a uniformly
consistent estimator. For convenience now confining to symmetric F , we use

vn(p) =
1

fn(F−1
n (1

2 + p
2 ))

,

where fn is one of many available nonparametric density estimators (e.g., kernel,
or nearest neighbor, or orthogonal series type) which satisfy

(2.3) sup
x

|fn(x) − f(x)| p−→ 0, n → ∞.

Then, for f(F−1(1
2

+ p
2
)) positive and continuous on an open subinterval of [0, 1]

containing [a, b], straightforward manipulations again utilizing (2.2) yield

(2.4) sup
p∈[a,b]

|vn(p) − vF (p)| p−→ 0,

which with standard techniques yields Corollary 2.1, for either Vn(·) or V ∗
n (·), with

vF (p) replaced by vn(p).
As an application, we obtain large sample uniform 1−α confidence bands for the

scale curve VF (p) over any interval [a, b]. Defining kα by P (‖B(·)‖b
a ≤ kα) = 1−α,

where ‖g(·)‖b
a = supa≤p≤b |g(p)|, these are given by

Vn(p)(or V ∗
n (p)) ± kα

vn(p)√
n

, a ≤ p ≤ b.

3. The multivariate case

In Section 3.1 uniform strong convergence is obtained both for the sample scale
curve Vn,D(p) under broad conditions on F and D(·, F ) and for a special version
V ∗

F (p) defined for the case that F is elliptically symmetric and D(·, F ) generates
ellipsoidal contours. For V ∗

F (p) and its studentized version, weak convergence is
obtained in Section 3.2, yielding uniform confidence bands.

3.1. Uniform strong convergence of sample scale curves. First let us
consider VF,D(p) with derivative denoted by vF,D(p) and with sample version Vn,D(p)
given by (1.3).

Theorem 3.1. Let F and D(·, F ) satisfy

(i) For any [a, b] ⊂ (0, 1), supp∈[a,b] |vF,D(p)| ≤ Ka,b < ∞,

(ii) D(x, F ) → 0 as ‖x‖ → ∞,

(iii) supS |D(x, Fn) − D(x, F )| → 0 a.s. for any bounded set S ∈ Rd, and

(iv) F−1
D(·,Fn)(1 − p) a.s.−→ F−1

D(·,F )(1 − p).
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Then, for any [a, b] ⊂ (0, 1),

(3.1) sup
p∈[a,b]

|Vn,D(p) − VF,D(p)| a.s.−→ 0, n → ∞.

Proof. Under assumptions (ii), (iii) and (iv), we have by Theorem 4.1 of Zuo
and Serfling [20] that, for any ε > 0 and all sufficiently large n,

CF,D(p − ε) ⊂ CFn,D(p) ⊂ CF,D(p + ε) a.s.

uniformly in p ∈ [a, b], and hence, using (i), we have

sup
p∈[a,b]

|Vn,D(p) − VF,D(p)| ≤ sup
p∈[a,b]

|VF,D(p + ε) − VF,D(p − ε)|

≤ 2Ka,b ε a.s.

This readily yields (3.1). �

Conditions (i) and (ii) are straightforward for typical (continuous) depth
functions, and condition (iii) has been established for several popular cases (see
Appendix B of Zuo and Serfling [20]). We note from the above proof that (i) may
be replaced, alternatively, by continuity of VF,D(p) on (0, 1). Condition (iv) requires
checking case by case; it holds, for example, under Conditions A below (see Lemma
3 and Theorem 1 of He and Wang [4] and Corollary 4.1 of Zuo and Serfling [20]).

Next we consider a modified scale curve and sample version, defined under

Conditions A.
(i) F is elliptically symmetric, i.e., has density of form

f(x) = |Σ|−1/2h((x − µ)′Σ−1(x − µ)), x ∈ Rd,

for some nonnegative scalar function h(·) and positive definite matrix Σ,
(ii) h(·) in (i) is continuous and strictly increasing, and
(iii) D(·, F ) is affine invariant with maximum at µ.

For F and D(·, F ) satisfying Conditions A, the central regions are nested ellipsoids
of form

{x ∈ Rd : (x − µ)′Σ−1(x − µ) ≤ c}
and we may define the scale curve VF,D(·) equivalently via (1.1) or (1.8) with A
given by A∗ = {all ellipsoids in Rd} instead of by AF or AD, i.e., by

V ∗
F (p) = inf{volume(A) : F (A) ≥ p, A ∈ A∗},

the volume of the smallest ellipsoid having probability weight p under F , which
we note does not depend upon the particular choice of depth function D(·, F )
satisfying Conditions A. We note that Condition A(iii) is satisfied by many typical
depth functions. For detailed discussion, see Liu and Singh (1993, Lemma 3.1) and
Zuo and Serfling [20, Theorems 3.3 and 3.4]. Consequently, we have

Lemma 3.1. Under Conditions A,

V ∗
F (p) = VF,D(p), 0 < p < 1.

The sample version

V ∗
n (p) = inf{volume(A) : Fn(A) ≥ p, A ∈ A∗},

the volume of the smallest ellipsoid containing at least a fraction p of the data,
provides a suitable alternative notion of scale curve for the case that F satisfies
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Conditions A, but differs from the depth-based version Vn,D(p) given by (1.9). It
is not difficult to extend Theorem 3.1 to

Theorem 3.2. Let F and D(·, F ) satisfy Conditions A. Suppose that, for any
[a, b] ⊂ (0, 1), the derivative v∗F (p) of V ∗

F (p) satisfies supp∈[a,b] |vF (p)| ≤ Ka,b < ∞.
Then, for any [a, b] ⊂ (0, 1),

(3.2) sup
p∈[a,b]

|V ∗
n (p) − V ∗

F (p)| a.s.−→ 0, n → ∞.

3.2. Uniform weak convergence of the modified scale curve. The weak
convergence result of Einmahl and Mason (1992) (or see Serfling [12]) immediately
yields

Lemma 3.2. Under Conditions A(i) and A(ii), and assuming that support(F )
= Rd, the process

(3.3) n1/2 v∗F (p)−1 (V ∗
n (p) − V ∗

F (p)), a ≤ p ≤ b,

converges weakly to the Brownian bridge B(·) over [a, b].

Let us now studentize by developing for v∗F (p) a depth-based estimator whose
construction does not depend on an assumption of ellipsoidal symmetry for F . We
first establish useful representations for v∗F (p) and vF,D(p).

Denote the squared Mahalanobis distance by

R = (X − µ)′Σ−1(X − µ)

and its cdf by FR. Under Conditions A(i) and A(ii), f is constant on the ellipsoids

Ec = {x ∈ Rd : (x − µ)′Σ−1(x − µ) = c}.
Let f(c) be the value of f on Ec. It is straightforward to show that

V ∗
F (p) =

πd/2F−1
R (p)d/2|Σ|1/2

Γ(d/2 + 1)
,

whence by differentiation we obtain

Lemma 3.3. Under Conditions A(i) and A(ii),

(3.4) v∗F (p) =
1

f(F−1
R (p))

.

We now establish

Lemma 3.4. Let F have a “center” MF and a density f , and let D(·, F ) be
differentiable and strictly decreasing along any ray from MF . Then

(3.5) vF,D(p) =
1

average of f over ∂CF,D(p)
.

Proof. For y = (y1, . . . , yd)′ ∈ Rd, let α = D(y, F ) and let (r, θ1, . . . , θd−1)′ be
the spherical coordinates of y−MF . The mapping φ : y 7→ (α, θ1, . . . , θd−1)′ is one-
to-one. Denote the Jacobian of the inverse transformation, y = φ−1(α, θ1, . . . , θd−1),
considered as a function of α, by Jα. Then

FD(z) = P (D(X, F ) ≤ z) =
∫

{y:D(y,F )≤z}
f(y) dy

=
∫ z

0

∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

f(φ−1(α, θ1, . . . , θd−1)) |Jα| dθd−1 · · ·dθ1dα,
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and

fD(z) =
∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

f(φ−1(z, θ1, . . . , θd−1)) |Jz| dθd−1 · · ·dθ1.

On the other hand,

volume({y : D(y, F ) ≥ z}) =
∫

{y:D(y,F )≥z}
dy

=
∫ max{D(·,F )}

z

∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

|Jα| dθd−1 · · ·dθ1dα,

and
d

dz
volume({y : D(y, F ) ≥ z}) = −

∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

|Jz| dθd−1 · · ·dθ1.

This yields

VF,D(p) =
∫ max{D(·,F )}

α(p)

∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

|Jα| dθd−1 · · ·dθ1dα,

where α(p) = F−1
D (1 − p), and thus

vF,D(p) = −
(

dα(p)
dp

)∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

|Jα(p)| dθd−1 · · ·dθ1

=
1

fD(F−1
D (1 − p))

∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

|Jα(p)| dθd−1 · · ·dθ1.

From the above we see that the average of f over ∂CF,D(p) is given by

fD(F−1
D (1 − p))

/∫ 2π

0

∫ π/2

−π/2

· · ·
∫ π/2

−π/2

|Jα(p)| dθd−1 · · ·dθ1 .

Thus follows (3.5). �

This result establishes a relationship between the density f and the volume
functional VF,D(p): the reciprocal of the average of f over the boundary of CF,D(p)
equals the velocity with which CF,D(p) expands toward the tails.

On the basis of Lemma 3.4, a depth-based estimator of vF,D(p) is given by

vn,D(p) =
1

average of fn(X i) over X i ∈ ∂CFn,D(bpnc/n)
,

where fn is a nonparametric density estimator of f . Further, by Lemma 3.3, under
Conditions A this is also an estimator of v∗F (p). Then, under typical consistency
conditions on fn and D(x, Fn), it follows that vn,D(p) is uniformly consistent over
0 ≤ p ≤ p0 < 1, and we obtain

Theorem 3.3. Under Conditions A along with consistency conditions on fn

and D(x, Fn), the process

(3.6) n1/2 vn,D(p)−1 (V ∗
n (p) − V ∗

F (p)), a ≤ p ≤ b,

converges weakly to the Brownian bridge B(·) over [a, b].

This yields, for example, uniform confidence bands for V ∗
F (p) in the same fashion

as described for the univariate case in Section 2.
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4. Complements

Other ways to utilize VF (p). For each fixed p, the “volume functional” VF (p)
defined over distributions F serves as a measure of multivariate scatter and may
be used for ordering multivariate distributions. See Liu, Parelius and Singh (1999)
and Zuo and Serfling [19]. Further, two multivariate distributions F and G may
be compared by a single curve, the graph of VGV −1

F , extending the “spread-spread
plot” given in the univariate case by Balanda and MacGillivray (1990). It also
serves as the basis for a new measure of multivariate kurtosis (Wang and Serfling
[18].

Influence function of the volume functional. Influence functions are developed
in Wang and Serfling [17] for a general class of the generalized quantile functions
of Einmahl and Mason (1992). As a special case, the influence function (IF) of
VF,D(p), considered as a functional of F , is obtained for D belonging to a general
class including the halfspace depth. This IF is a two-valued step function with
jump on the boundary of the pth central region, from a negative value inside to a
positive value outside. Thus this functional has finite gross error sensitivity and
infinite local shift sensitivity, and the influence of contamination at location y
causes underestimation or overestimation according as y is within or without the
pth central region.

Variants of the scale curve. In some cases it is more convenient to index central
regions by a measure of outlyingness other than the probability weight, and then
the scale curve is a plot of the volume versus this index. See Serfling [13], [14] for
treatment of a “spatial scale curve” based on the spatial quantile function.

An heuristic paradigm for scale curve asymptotics. Based on nested central
regions of increasing probability, the scale curve VF,D(·) has an inverse,

V −1
F,D(y) = F -probability of smallest central region CF,D(·) having volume ≥ y,

with sample analogue

V −1
n,D(y) = Fn-probability of smallest central region CFn,D(·) having volume ≥ y,

for y > 0. Then, using
d

dy
V −1

F,D(y)
∣∣
y=VF,D(p) = vF,D(V −1

F,D(VF,D(p))−1 = vF,D(p)−1,

we may write

vF,D(p)−1(Vn,D(p) − VF,D(p)) .= V −1
F,D(Vn,D(p)) − V −1

F,D(VF,D(p))
.= V −1

n,D(Vn,D(p)) − V −1
n,D(VF,D(p))

.= p − V −1
n,D(VF,D(p))

( = −(V −1
n,D(VF,D(p)) − V −1

F,D(VF,D(p))) ).

Here the first approximation step is based on Taylor expansion, the second on a
modulus of continuity result for (V −1

n,D − V −1
F,D)(·), and the third on the definition

of V −1
n,D. These steps all need to be made precise in order to obtain weak conver-

gence of the scale curve process vF,D(·)−1(Vn,D(·)−VF,D(·)). This is similar to the
treatment of the classical univariate quantile process by reduction to the classical
empirical process, except that here we have reduced to the empirical probability
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weight V −1
n,D(VF,D(p)) of the central region CF,D(p), a function which increases by

jumps of size 1/n as CF,D(p) expands with increasing p. A remaining issue is to
deal with the difference between

V −1
n,D(VF,D(p)) =

1
n

n∑

j=1

1{Xj ∈ smallest CFn,D(·) with volume ≥ VF,D(p)}

and its variant with CFn,D replaced by CF,D, which simplifies to

1
n

n∑

j=1

1{Xj ∈ CF,D(p)}

(in which case convergence to the Brownian bridge would be immediate). We will
pursue this approach to scale curve asymptotics in future work.

Other symmetry structures for F . The results for F ellipsoidally symmetric
can be extended to the case of F having mean µ, covariance matrix Σ, and density
of form

f(x) = |Σ|−1/2 h(‖Σ−1/2(x − µ)‖)
for some continuous and strictly increasing nonnegative function h and choice of
norm ‖ · ‖. The contours of equal density enclose regions of form

{x : ‖Σ−1(x − µ) ≤ a}.

For the Euclidean norm ‖ · ‖2, F is ellipsoidally symmetric and these regions are
ellipsoids. Alternatively, one may consider the L1 norm, ‖x‖ = |x1|+ · · ·+ |xd| for
‖x‖ = (x1, . . . , xd)′. In this case the contours enclose hypertetrahedral regions.

With Conditions A modified using the above generalized condition, and defining
V ∗

F (·) accordingly, Lemmas 3.1 and 3.2 and Theorems 3.2 and 3.3 hold unchanged,
and Lemmas 3.3 and 3.4 hold with obvious modifications. The same depth-based
estimator of vF,D(p) is used unchanged.

In this case, we can estimate v∗F (p) directly not using D, via

vF (p) =
1

f

(
F−1

‖Σ−1(X − µ)‖
(p)

)

and an empirical analogue based on fn and

Gn(y) =
1
n

n∑

1

1{‖Σ̂
−1

(Xi − µ̂))‖ ≤ y}.

One advantage of the depth-based estimator is that it does not depend upon such
an explicit structural assumption.
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