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Abstract

Given a multivariate probability distribution F , a corresponding depth function orders points
according to their “centrality” in the distribution F . One useful role of depth functions is
to generate two-dimensional curves for convenient and practical description of particular
features of a multivariate distribution, such as dispersion and kurtosis. Here the robustness
of sample versions of such curves is explored via the influence function approach applied to
the relevant functionals, using structural representations of the curves as generalized quantile
functions. In particular, for a general class of so-called Type D depth functions including the
well-known Tukey or halfspace depth, we obtain influence functions for the depth function
itself, the depth distribution function, the depth quantile function, and corresponding depth-
based generalized quantile functions. Robustness behavior similar to the usual univariate
quantiles is found and quantified: the influence functions are of step function form with finite
gross error sensitivity but infinite local shift sensitivity. Applications to a “scale” curve, a
Lorenz curve for “tailweight”, and a “kurtosis” curve are treated. Graphical illustrations
are provided for the influence functions of the scale and kurtosis curves in the case of the
bivariate standard normal distribution and the halfspace depth function.

AMS 2000 Subject Classification: Primary 62G35 Secondary 62H05.

Key words and phrases: robustness; multivariate analysis; nonparametric methods; general-
ized quantiles; dispersion; kurtosis.



1 Introduction

A methodology gaining increasing application in nonparametric multivariate analysis is the
use of depth functions. These provide a way of ordering points according to a notion of
“centrality”, or equivalently “outlyingness”, where typically the point of maximal depth
represents a reasonable notion of multivariate median and usually agrees with notions of
center defined by symmetry considerations when such are applicable. See Liu, Parelius and
Singh [10], Zuo and Serfling [25], and Mosler [12] for broad treatments of depth functions
and depth-based methods and Serfling [18] for a recent overview. Since depth functions are
basic to the development of the present paper, brief background is provided in an Appendix.

One leading role of depth functions is to generate multivariate quantile functions, via the
contours of equal depth or equivalently equal outlyingness, and corresponding quantile-based
nonparametric descriptive measures for dispersion, skewness, and kurtosis – see Serfling [17].
Another important use of depth functions – introduced by Liu, Parelius and Singh [10]
and, indeed, the focus of the present paper – is to generate convenient, one-dimensional
sample curves designed to provide visual display of particular features or characteristics of
higher-dimensional distributions. In particular, they discuss and illustrate depth-based one-
dimensional curves for visualization of scale and kurtosis features of multivariate distribution
and comment “it is the very simplicity of such objects which make them powerful as a general
tool for the practicing statistician”.

With data we examine the sample versions of such “feature curves”, as we might term
them, analogously to the use of univariate empirical distribution functions. These, however,
have the added appeal of being smooth curves instead of step functions. Some partial results
on their distribution theory may be found in [15], [16]. In the present paper, our purpose
is to characterize the robustness of any such depth-based sample “feature curve”, via the
influence function approach applied to the corresponding population curve. For example,
for a particular depth-based sample kurtosis curve, we shall obtain bounded influence and
thus finite gross error sensitivity, in contrast with the unbounded influence functions of
moment-based kurtosis functionals.

Let us now formulate technically the setting and objectives of this paper. For a given
multivariate distribution, Einmahl and Mason [2] define corresponding generalized quantile
functions, curves designed to summarize in convenient two-dimensional plots certain features
of the given multivariate distribution. Specifically, given a probability distribution F on Rd,
a class A of Borel sets in Rd, and a real-valued set function λ(A) defined over A ∈ A, they
define an associated “generalized quantile function” by

UF (p) = inf{λ(A) : F (A) ≥ p, A ∈ A}, 0 < p < 1. (1)

For d = 1, A the class of halflines, and λ((−∞, x]) = x, we obtain the usual univariate
quantile function. As shown in [15], the above-discussed depth-based sample “feature curves”

1



of [10] may be conveniently represented for theoretical purposes as sample versions of depth-
based generalized quantile functions as given by (1). Consequently, our goal may be expressed
as finding the influence function of a generalized quantile function that is defined in terms
of a depth function.

Assume given a depth function D(x, F ) providing an F -based ordering of the points x
in Rd according to their “centrality” in the distribution F . Denoting the central regions or
level sets of D(·, F ) by I(α,D,F ) = {x : D(x, F ) ≥ α}, α > 0, we define CF,D(p) to be the
central region having probability weight p and introduce

Condition A.

(i) F (·) and D(·, F ) are continuous functions, and

(ii) λ(I(α,D,F )) is a decreasing function of α.

It follows easily [15] that CF,D(p) = I(F−1
D(X, F )

(1 − p),D, F ), and that, with A given by
{CF,D(p), 0 < p < 1},

UF (p) = λ(CF,D(p)) = λ(I(F−1
D(X, F )(1 − p),D, F )), 0 < p < 1. (2)

For fixed F , the curve given by (2) for 0 < p < 1 is a convenient two-dimensional plot and
can describe some key feature of the multivariate F . Particular choices of λ(·) yield, for
example, a scale curve for dispersion [10] [15] [22] and a Lorenz curve for tailweight [10] [15].
Further, a transform of the scale curve yields a kurtosis curve [23].

To explore the robustness of sample versions of such depth-based generalized quantile
functions, we consider for each fixed p the functional of F given by

Tp(F ) = λ(CF,D(p))

and apply the influence function approach [6], which characterizes the limiting effect on the
functional when F undergoes a small perturbation of the form

Fy, ε = (1 − ε)F + εδy,

where δy denotes the cdf placing mass 1 at y, y ∈ Rd. In general, the influence function (IF)
of a functional T on distributions F on Rd is defined at each y ∈ Rd and choice of F as

IF(y, T, F ) = lim
ε↓0

T (Fy, ε) − T (F )

ε
.

For Fn the sample distribution function based on a sample X1, . . . ,Xn from F , we have
under mild regularity conditions the approximation

T (Fn) − T (F )
.
=

1

n

n∑

i=1

IF(X i, T, F ), (3)
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which indicates the contribution of each observation (especially an outlier) to the estimation
error and yields as well the asymptotic variance of T (Fn):

∫
IF(x, T, F )2 dF (x). See [7], [14]

and [6] for details.
There are a variety of possible choices for D(·, ·), of course. In the present development

we confine attention to the case of Type D depth functions, defined in [25] as those of form

D(x, F,C) = inf{F (C) : x ∈ C ∈ C}, (4)

where C is a specified class of closed subsets of Rd. (See the Appendix for further discussion.)
Further, we assume that D and C satisfy

Condition B.

(i) If C ∈ C, then Cc ∈ C, and

(ii) maxx D(x, F,C) < 1,

where Ac denotes the complement, and A the closure, of a set A.
Specifically, then, our primary goal in the present paper is to obtain the IF of a generalized

quantile functional Tp(F ) = λ(CF,D(·, F, C)(p)) based on a Type D depth function with F , D,
and C satisfying Conditions A and B. As an intermediate step, we also obtain the IF of
the Type D depth functions themselves, a result significant in its own right, because depth
functions are used for outlier identification and any reasonable outlier identifier should itself
be robust against outliers.

Specifically, in Section 2 we derive the IF’s for

(a) the depth function D(x, F,C) for any fixed x,

(b) the depth distribution function FD(X, F, C)(z) for any fixed real z, and

(c) the depth quantile function F−1
D(X, F, C)(p) for any fixed p ∈ (0, 1).

The IF for (b) is used in getting that for (c), which, as a matter of interest, can also be
represented as a generalized quantile function (see [15]). In turn, the IF for (c) is used to
obtain our target IF, that for Tp(F ). This result is derived in Section 3.

Let us also summarize our results qualitatively. Robustness behavior similar to the usual
univariate quantiles is found and quantified: the influence functions for (a), (b), and (c)
are step functions in form, with finite gross error sensitivity [6], [14] but infinite local shift
sensitivity. This yields similar behavior for the IF of Tp(F ).

We conclude this introduction with illustrative preliminary discussion of two important
generalized quantile curves, i.e., functionals Tp(F ) designed to measure scale and kurtosis,
respectively. These will be revisited with further details in Sections 3.1 and 3.3, along with
a tailweight example in Section 3.2.
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Example Scale and kurtosis curves, for elliptically symmetric F and halfspace depth. Let
F have a density of form

f(x) = |Σ|−1/2h((x − µ)′Σ−1(x − µ)), x ∈ Rd,

for a continuous and positive scalar function h(·) and a positive definite matrix Σ. Let D be
the halfspace depth, a well-known special case of Type D depth functions (see Appendix).
Then the central regions turn out to be nested ellipsoids of form

{x ∈ Rd : (x− µ)′Σ−1(x −µ) ≤ c}.

Scale. With λ(A) the volume of A, the above general functional Tp(F ) becomes simply
the volume of the central region having probability weight p, 0 < p < 1. This defines
a particular generalized quantile function called the scale curve [10], for it quantifies the
expansion of the (nested) central regions with increasing probability weight p. Detailed
treatment is found in [8], [10], and [22]. Corollary 3.1 below augments these previous studies
by presenting the IF of such a scale curve (pointwise) in the case of Type D depth. In
particular, for the example at hand, with FR the cdf of the squared Mahalanobis distance of
X from µ,

R = (X − µ)′Σ−1(X −µ),

we have

IF(scale,y) =
p −1{(y − µ)′Σ−1(y − µ) ≤ F−1

R (p)}
|Σ|−1/2h(F−1

R (p))
,

which is positive or negative according as y is outside or inside the ellipsoid

{x ∈ Rd : (x − µ)′Σ−1(x − µ) ≤ F−1
R (p)}.

Specializing to F bivariate standard normal, we have f(x) = (1/2π) exp{−x′x/2} and h(r)
= (1/2π) exp{−r/2}, and R = X ′X has the chi-squared distribution with 2 degrees of
freedom, i.e., is exponential with scale parameter 2. Thus FR(r) = 1 − exp{−r/2}, F−1

R (p)
= −2 ln(1 − p), and h(F−1

R (p)) = (1 − p)/2π, and the above IF reduces to

IF(scale,y) =

{
−2π, y ′y ≤ −2 ln(1 − p)
2πp/(1 − p), y ′y ≥ −2 ln(1 − p).

This shows that, as might be expected for estimation of scale, serious “inliers” cause under-
estimation and serious “outliers” cause overestimation. The features of this IF are illustrated
in Figure 1 and will be seen in Corollary 3.1 to hold under more general conditions.

Kurtosis. For nonparametric description of a distribution, the natural next step after
treating location, spread, symmetry and skewness is to characterize kurtosis. The classical
univariate (moment-based) notion of kurtosis, the standardized fourth central moment, has
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been construed as simply a discriminator between heavy peakedness and heavy tails, but
is more properly understood as a measure concerning the structure of the distribution in
the region between, and linking, the center and the tails. The boundary between the center
and tails represents the so-called “shoulders” of the distribution. In these picturesque terms,
classical univariate kurtosis measures dispersion of probability mass away from the shoulders,
toward either the center or the tails or both. Thus peakedness, kurtosis and tailweight are
distinct, although interrelated, features of a distribution. See [23] for detailed discussion.

For a distribution in Rd with mean µ and covariance matrix Σ, the classical univariate
kurtosis is generalized by Mardia [11] to the fourth moment of the Mahalanobis distance of
X from µ. This may be seen to measure the dispersion of X about the points on the ellipsoid
(x − µ)′Σ−1(x − µ) = d, interpreting this surface as the “shoulders” of the distribution.
Higher kurtosis arises when probability mass is diminished near the shoulders and greater
either near µ (greater peakedness) or in the tails (greater tailweight) or both. Such a measure
does not, however, indicate the shape of the distribution in this region. See [23] for further
discussion.

Alternative kurtosis measures have been introduced which are quantile-based. These
complement the moment-based types by characterizing the shape of the distribution within
affine equivalence. The univariate case was treated by Groeneveld and Meeden [5] and a
depth-based extension to the multivariate case has recently been introduced by Wang and
Serfling [23], where detailed treatment is found. Such measures may be represented as
transforms of the volume function or equivalently of the above-discussed scale curve:

kF,D(p) =
VF,D(1

2 − p
2) + VF,D(1

2 + p
2) − 2VF,D(1

2)

VF,D(1
2 + p

2) − VF,D(1
2 − p

2)
.

For this notion of kurtosis, the “shoulders” of F are given by the contour of the central region
of probability 1/2, i.e., the “interquartile region” CF,D(1

2). The quantity kF,D(p) measures
the relative volumetric difference between equiprobable regions just without and just within
the shoulders, in the tail and central parts, respectively. The IF of kF,D(p) under general
conditions is given in Section 3.3. Again specializing to the case of elliptically symmetric F
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and halfspace depth, we obtain

IF(y, k·,D(p), F )

=
2Γ(d/2 + 1)

πd/2[(F−1
R (1

2 + p
2))

d/2 − (F−1
R (1

2 − p
2))

d/2]2
×

{[(F−1
R (1

2))
d/2 − (F−1

R (1
2 − p

2))
d/2] ·

(1
2 + p

2) − 1{(y − µ)′Σ−1(y − µ) ≤ F−1
R (1

2 + p
2)}

h(F−1
R (1

2 + p
2))

+[(F−1
R (1

2 + p
2))

d/2 − (F−1
R (1

2))
d/2] ·

(1
2 − p

2) − 1{(y −µ)′Σ−1(y − µ) ≤ F−1
R (1

2 − p
2)}

h(F−1
R (1

2 − p
2))

−[(F−1
R (1

2 + p
2))

d/2 − (F−1
R (1

2 − p
2))

d/2] ·
1
2 − 1{(y − µ)′Σ−1(y − µ) ≤ F−1

R (1
2)}

h(F−1
R (1

2))
}.

We see that the IF of kF,D(p) can be either positive or negative for contamination at y within
the (1

2 −
p
2)th central region, jumps by a positive amount as y moves out of this region, jumps

again by a positive amount as y moves out of the 1
2th central region, and finally again by a

positive amount as y moves out of the (1
2 + p

2)th central region. Outside this region, under
some conditions on F , the IF is positive. (See Groeneveld [4] for discussion in the univariate
case.) In any case, the IF is bounded and thus has finite gross error sensitivity, in contrast
with the unbounded IF’s of moment-based kurtosis measures.

For the case of F bivariate standard normal, the above IF becomes

IF(kurtosis,y)

=





0, 0 ≤ y ′y ≤ −2 ln((1 + p)/2)

−4w(p)[ln(1 − p)]/(1 + p), −2 ln((1 + p)/2) ≤ y′y ≤ −2 ln(1/2)

−4w(p)[ln(1 + p) − p(1 + p)−1 ln(1 − p), −2 ln(1/2) ≤ y′y ≤ −2 ln((1 − p)/2)

4pw(p)[(1 − p)−1 ln(1 + p) + (1 + p)−1 ln(1 − p), y′y ≥ −2 ln((1 − p)/2),

where w(p) = [ln((1 + p)/(1 − p))]2. See Figure 2 for illustration. 2
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y10 1.18

IF( (   ,    ),       (0.4), F )y1 y2 V.,D

y2

−6.28

4.19

Figure 1: The IF of the scale curve for F bivariate standard normal.
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y1
0

0.76 1.18 1.67

IF( (   ,    ),       (0.5), F )y1 y2 k.,D

−2.11

0.58

1.53

y2

Figure 2: The IF of the kurtosis curve for F bivariate standard normal.
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2 The IF’s of Type D depth, distribution, and quantile

functions

Consider now a Type D depth function as given by (4) and satisfying Condition B. For
x,y ∈ Rd, defining

D(y)(x, F,C) = inf{F (C) : x ∈ C ∈ C, y ∈ C},

D(∼ y)(x, F,C) = inf{F (C) : x ∈ C ∈ C, y 6∈ C},

with the convention that inf ∅ = ∞, we have

D(x, F,C) = min{D(y)(x, F,C), D(∼ y)(x, F,C)}.

That is, for a Type D depth function, the depth of any point x may be represented, for any
choice of another point y, as the minimum of the depths of the point x taken with respect
to the subclasses of sets C which either contain or do not contain the point y, respectively.

The IF’s to be derived all will involve in their formulas the sets

Sy = {x : D(y)(x, F,C) < D(∼ y)(x, F,C)}, y ∈ Rd.

Under typical smoothness conditions on F and D(x, F,C), there exists a unique deepest
point as center, say M , and for each x 6= M a unique “optimal” set Cx for which D(x, F,C)
= F (Cx). In this case, x ∈ Sy if and only if y belongs to the optimal set for x. For x = M ,
however, there typically are multiple optimal sets, in which case, for every y 6= M , some
contain y and some do not, and M 6∈ Sy. Further aspects of Sy are provided by the following
result.

Lemma 2.1 For x ∈ Sy, D(x, F,C) ≥ D(y, F,C). Equivalently,

Sy ⊂ I(D(y, F,C),D(·, F,C), F ).

Proof. For x ∈ Sy,

D(x, F,C) = min{D(y)(x, F,C), D(∼ y)(x, F,C)}
= D(y)(x, F,C)

= inf{F (C) : x ∈ C ∈ C, y ∈ C}
≥ inf{F (C) : y ∈ C ∈ C}
= D(y, F,C),

establishing the stated inequality. The inclusion is equally straightforward.

The converse is not true. For example, we have D(M , F,C) ≥ D(y, F,C), each y, but,
as noted above, M 6∈ Sy for y 6= M .
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2.1 The IF of D(y, F, C)

The IF for the halfspace depth has been treated in an excellent study by Romanazzi [13].
Theorem 2.1 below covers Type D depth functions in general and shows that the influence
upon D(x, F,C) due to perturbation of F by contamination at y takes one of two values
according as x ∈ Sy or x 6∈ Sy, in the first case positively incrementing the depth at x and
in the second case negatively incrementing it. In other words, contamination at y causes
the centrality of x to increase or decrease, according to whether or not Sy contains x. The
boundedness of this IF keeps the gross error sensitivity [6], [14] of the functional D(x, F,C)
finite, as desired. Due to the step function structure of the IF, however, the local shift
sensitivity [6], [14] of D(x, F,C) is infinite, except in the case of a unique deepest point M ,
for which, as seen above, y 6= M implies M 6∈ Sy, so that the IF of D(M , F,C) assumes
the constant value −D(M , F,C) for all y ∈ Rd, making the local shift sensitivity zero.

Theorem 2.1 The influence function of D(x, F,C) is, for y ∈ Rd,

IF(y,D(x, ·,C), F ) = 1{x ∈ Sy} − D(x, F,C).

Proof. It is easily checked that

D(x, Fy, ε,C) = min{D(y)(x, Fy, ε,C), D(∼ y)(x, Fy, ε,C)}

= min{(1 − ε)D(y)(x, F,C) + ε, (1 − ε)D(∼ y)(x, F,C)}.

Then, for x 6∈ Sy, we have D(x, F,C) = D(∼ y)(x, F,C) and hence

D(x, Fy, ε,C) = (1 − ε)D(∼ y)(x, F,C) = (1 − ε)D(x, F,C),

yielding

IF(y,D(x, ·,C), F ) = lim
ε↓0

D(x, Fy, ε,C) −D(x, F,C)

ε
= −D(x, F,C).

On the other hand, for x ∈ Sy we have D(x, F,C) = D(y)(x, F,C) and, for ε sufficiently
small,

(1 − ε)D(∼ y)(x, F,C) > (1 − ε)D(y)(x, F,C) + ε,

whence
D(x, Fy, ε,C) = (1 − ε)D(y)(x, F,C) + ε = (1 − ε)D(x, F,C) + ε,

yielding
IF(y,D(x, ·,C), F ) = 1 − D(x, F,C)

and completing the proof.
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2.2 The IF of FD(X, F, C)(z)

Denoting by FD(X, F, C) the distribution function of the random depth D(X , F,C), we find the
IF of FD(X, F, C)(z) for any fixed real z.

Theorem 2.2 If FD(X, F, C) is continuous with density fD(X, F, C), then the influence function
of FD(X, F, C)(z) is, for y ∈ Rd,

IF(y, FD(X, ·, C)(z), F )

=

{
fD(X, F, C)(z) · z − FD(X, F, C)(z), D(y, F,C) ≥ z,

fD(X, F, C)(z) · z − FD(X, F, C)(z) + 1 − fD(X, F, C)|X ∈ Sy (z) · P (X ∈ Sy), D(y, F,C) < z.

Proof. For all ε > 0 sufficiently small, and with P and Py, ε the probability measures
corresponding to F and Fy, ε respectively, we have

FD(X, Fy, ε, C)(z) = Py, ε{D(X , Fy, ε,C) ≤ z}

= (1 − ε)P{D(X , Fy, ε,C) ≤ z} + ε1{D(y, Fy, ε,C) ≤ z}

= (1 − ε)[P{D(X , Fy, ε,C) ≤ z and X ∈ Sy}
+ P{D(X , Fy, ε,C) ≤ z and X 6∈ Sy}] + ε1{D(y, Fy, ε,C) ≤ z}

= (1 − ε)[P{(1 − ε)D(X, F,C) + ε ≤ z and X ∈ Sy}
+ P{(1 − ε)D(X , F,C) ≤ z and X 6∈ Sy}] + ε1{D(y, Fy, ε,C) ≤ z}

= (1 − ε)

[
P

{
D(X, F,C) ≤ z − ε

1 − ε
and X ∈ Sy

}

+ P

{
D(X , F,C) ≤ z

1 − ε
and X 6∈ Sy

}]
+ ε1{D(y, Fy, ε,C) ≤ z}.

(i) Suppose that D(y, F,C) > z. Then for ε sufficiently small we have

{
x : D(x, F,C) ≤ z − ε

1 − ε
and x ∈ Sy

}
= ∅,

{
x : D(x, F,C) ≤ z

1 − ε
and x 6∈ Sy

}
=

{
x : D(x, F,C) ≤ z

1 − ε

}
, and

y 6∈ {x : D(x, Fy, ε,C) ≤ z}.
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Thus

FD(X, Fy, ε, C)(z) = (1 − ε)P

{
D(X , F,C) ≤ z

1 − ε

}
= (1 − ε)FD(X, F, C)

(
z

1 − ε

)
,

and we readily obtain

IF(y, FD(X, ·, C)(z), F ) = fD(X, F, C)(z) · z − FD(X, F, C)(z).

(ii) Next suppose that D(y, F,C) = z. Then, since z ≤ maxx D(x, F,C) < 1,

z − ε

1 − ε
< z

and it follows that {
x : D(x, F,C) ≤ z − ε

1 − ε
and x ∈ Sy

}
= ∅,

and, for ε sufficiently small, that

y 6∈ {x : D(x, Fy, ε,C) ≤ z}.

Then, by steps similar to those in (i), we obtain

FD(X, Fy, ε, C)(z) = (1 − ε)FD(X, F, C)|X 6∈ Sy

(
z

1 − ε

)
· P (X 6∈ Sy),

FD(X, F, C)(z) = FD(X, F, C)|X 6∈ Sy(z) · P (X 6∈ Sy),

fD(X, F, C)(z) = fD(X, F, C)|X 6∈ Sy(z) · P (X 6∈ Sy).

which used together yield

IF(y, FD(X, ·, C)(z), F ) = [fD(X, F, C)|X 6∈ Sy (z) · z − FD(X, F, C)|X 6∈ Sy(z)] · P (X 6∈ Sy)

= fD(X, F, C)(z) · z − FD(X, F, C)(z).

(iii) Finally, suppose that D(y, F,C) < z. Then D(y, Fy, ε,C) ≤ z for ε sufficiently small,
and by steps similar to the preceding, we arrive at

IF(y, FD(X, ·, C)(z), F )

= fD(X, F, C)(z) · z − FD(X, F, C)(z) + 1 − fD(X, F, C)|X ∈ Sy (z) · P (X ∈ Sy).

Combining (i), (ii) and (iii), the proof is complete.
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2.3 The IF of F−1
D(X, F, C)

(p)

It is now relatively straightforward to obtain the IF of the depth quantile function F−1
D(X, F, C)

(p)
for any fixed p ∈ (0, 1).

Theorem 2.3 If fD(X, F, C)(F
−1
D(X, F, C)(p)) > 0, then the influence function of F−1

D(X, F, C)(p) is,
for y ∈ Rd,

IF(y, F−1
D(X, ·, C)(p), F )

=





−F−1
D(X, F, C)(p) + p

fD(X, F, C)(F
−1
D(X, F, C)

(p))
,

for D(y, F,C) ≥ F−1
D(X, F, C)(p),

−F−1
D(X, F, C)(p) +

p−1+fD(X, F, C)|X ∈ Sy (F−1
D(X, F, C)

(p))·P (X ∈ Sy)

fD(X, F, C)(F
−1
D(X, F, C)

(p))
,

for D(y, F,C) < F−1
D(X, F, C)(p).

Proof. Using a standard implicit function theorem approach with

FD(X, Fy, ε, C)(F
−1
D(X, Fy, ε, C)(p)) = p,

we have
d

dε
FD(X, Fy, ε, C)(F

−1
D(X, Fy, ε, C)(p))| ε=0

= 0,

which yields in straightforward fashion, by carrying out the differentiation,

IF(y, F−1
D(X, ·, C)(p), F ) = −

IF(y, FD(X, ·, C)(z), F )|
z=F−1

D(X , F, C)
(p)

fD(X, F, C)(F
−1
D(X, F, C)(p))

.

Now apply Theorem 2.2.

3 The IF of a Type D depth-based generalized quantile

functional

We are now prepared to investigate the IF of the general functional

Tp(F ) = λ(CF,D(p)) = λ(I(F−1
D(X, F )

(1 − p),D, F )),

assuming Conditions A and B and a further condition on λ:

Condition C.
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λ(·) is finitely additive: for A and B disjoint, λ(A ∪ B) = λ(A) + λ(B).

In this case, for α > 0 and y ∈ Rd, defining

λ(y)(α,D(·, F,C), F ) = λ({x : D(x, F,C) ≥ α and x ∈ Sy})

λ(∼ y)(α,D(·, F,C), F ) = λ({x : D(x, F,C) ≥ α and x 6∈ Sy}),

we have

λ(I(α,D(·, F,C), F )) = λ(y)(α,D(·, F,C), F ) + λ(∼ y)(α,D(·, F,C), F ).

Theorem 3.1 If Conditions A, B and C hold, λ(y)(α,D(·, F,C), F ) and λ(∼ y)(α,D(·, F,C), F )
are differentiable functions of α, and fD(X, F, C)(F

−1
D(X, F, C)(1− p)) > 0, then the IF of Tp(F ) is,

for y ∈ Rd,

IF(y, Tp(·), F )

=





d
dα

λ(I(α,D(·, F,C), F ))|
α=F−1

D(X, F, C)
(1−p)

× 1−p

fD(X, F, C)(F
−1
D(X, F, C)

(1−p))
,

for D(y, F,C) ≥ F−1
D(X, F, C)(1 − p),

d
dα

λ(I(α,D(·, F,C), F ))|
α=F−1

D(X, F, C)
(1−p)

×
−p+fD(X, F, C)|X ∈ Sy (F−1

D(X, F, C)
(1−p))·P (X ∈ Sy)

fD(X, F, C)(F
−1
D(X, F, C)

(1−p))

− d
dα

λ(y)(α,D(·, F,C), F )|
α=F−1

D(X, F, C)
(1−p)

,

for D(y, F,C) < F−1
D(X, F, C)(1 − p).

Proof. For ε sufficiently small, and by steps similar to those used in Section 2,

Tp(Fy, ε)

= λ(CFy,ε, D(·, Fy,ε, C) (p))

= λ(I(F−1
D(X, Fy, ε, C)(1 − p),D(·, F,C), Fy, ε))

= λ({x : D(x, Fy, ε,C) ≥ F−1
D(X, Fy, ε, C)(1 − p)}

= λ(y)

(
F−1

D(X, Fy, ε, C)(1 − p) − ε

1 − ε
,D(·, F,C), F

)
+ λ(∼ y)

(
F−1

D(X, Fy, ε, C)(1 − p)

1 − ε
,D(·, F,C), F

)
.
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Thus

IF(y, Tp(·), F ) = IF(y, λ(C·, D(·, ·, C)(p), F ))

=
d

dε
λ(CFy,ε, D(·, Fy,ε, C) (p))|

ε=0

=
d

dα
λ(I(α,D(·, F,C), F ))|

α=F−1
D(X, F, C)

(1−p)
×
[
IF(y, F−1

D(X, ·, C)
(1 − p), F ) + F−1

D(X, F, C)
(1 − p)

]

− d

dα
λ(y)(α,D(·, F,C), F )|

α=F−1
D(X, F, C)

(1−p)
.

In the case α ≤ D(y, F,C), we have {x : D(x, F,C) ≥ α and x ∈ Sy} = Sy, so that

λ(y)(α,D(·, F,C), F ) = λ({x : D(x, F,C) ≥ α and x ∈ Sy}) = λ(Sy)

is a constant function of α, therefore satisfying

d

dα
λ(y)(α,D(·, F,C), F ) = 0.

It is now straightforward to complete the proof using Theorem 2.3.

The preceding result shows that the influence upon Tp(F ) due to perturbation of F by
contamination at y takes one of two values according as y lies within or without the pth
central region. Thus this functional has finite gross error sensitivity but infinite local shift
sensitivity. These features reflect familiar aspects of the IF of the usual univariate quantile
function F−1(p), such as that the influence of a contaminating observation depends only on
whether it lies above or below a certain threshold but not on its particular value, that is,
equivalently, only on whether its depth lies above or below a certain threshold but not on
its particular depth value.

Application of Theorem 3.1 in several contexts is illustrated in the following subsections.

3.1 The IF of the scale curve based on Type D depth

In the Example of Section 1, we introduced the “scale curve” and illustrated its IF in a special
case. Here we obtain the general result as an application of Theorem 3.1. For convenience,
let us introduce some reasonable conditions under which the IF assumes a simpler form.

Condition D.

(i) D(x, F,C) is strictly decreasing in x in the support of F along any ray starting from
the point of maximal depth,
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(ii) D(x, F,C) is differentiable in x, and

(iii) For any α ≥ 0, the density f(x) is constant over the α depth contour,

∂I(α,D(·, F,C), F ) = D−1(α,F,C).

We then have

Corollary 3.1 Assume the conditions of Theorem 3.1 along with Conditions D. Then, for
any p such that f(D−1(F−1

D(X, F, C)
(1 − p), F,C)) > 0, we have, for y ∈ Rd,

IF(y, V·,D(p), F ) =
p −1{D(y, F,C) ≥ F−1

D(X, F, C)
(1 − p)}

f(D−1(F−1
D(X, F, C)(1 − p), F,C))

. (5)

Proof. For λ(·) the volume function, using transformation to polar coordinates it is
straightforward to show (or see [22] for a similar result and proof) that

fD(X, F, C)|X ∈ Sy (z) · P (X ∈ Sy) = −f(D−1(z, F,C)) × d

dz
λ(y)(z,D(·, F,C), F )

and

fD(X, F, C)(z) = −f(D−1(z, F,C)) × d

dz
λ(I(z,D(·, F,C), F )).

The result now follows immediately.

We see that the IF of VF,D(p) is a two-valued step function with a jump on the boundary
of the pth central region, from a negative value inside to a positive value outside, reflecting
that serious “inliers” cause underestimation and serious “outliers” overestimation. Corollary
3.1 quantifies this effect. We note that the IF conforms to the role of the depth function in
defining contours that demark degrees of “centrality” or “outlyingness”.

3.2 The IF of a Lorenz curve based on Type D depth

Following Gastwirth [3], the Lorenz curve of a positive univariate random variable Y having
cdf G is defined as

LG(p) =
1

E(Y )

∫ p

0

G−1(t) dt =
1

E(Y )

∫ G−1(p)

0

y dG(y), 0 ≤ p ≤ 1,

which we note is scale-free due to normalization by E(Y ). As a method to characterize
tailweight for multivariate distributions, Liu, Parelius and Singh [10] introduce a depth-based
approach utilizing the Lorenz curve of the univariate depth distribution FD. As discussed
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in [15], the depth-based Lorenz curve LFD
(p) may be represented as a generalized quantile

function. That is, with A given by the outer regions of D(·, F ) and

λ(A) =
1

ED(X,F )

∫

A

D(x, F ) dF, A ∈ A,

we obtain for 0 < p < 1

Tp(F ) = λ(CF,D(p)c) =
1

ED(X,F )

∫ F−1
D (p)

0

y dFD(y) =
1

ED(X,F )

∫ p

0

F−1
D (p) dp = LFD

(p).

For the case of Type D depth, the IF of this functional can be obtained from Theorem 3.1.
We omit the details.

3.3 The IF of a kurtosis curve based on Type D depth

For the case of Type D depth, the IF of this kurtosis measure is derived via “influence
function calculus” in conjunction with the IF of the scale curve, obtaining

IF(y, k·,D(p), F )

=
2

[VF,D(1
2 + p

2) − VF,D(1
2 − p

2)]
2
×{[VF,D(1

2) − VF,D(1
2 − p

2)] · IF(y, V·,D(1
2 + p

2), F )

+[VF,D(1
2 + p

2) − VF,D(1
2)] · IF(y, V·,D(1

2 − p
2), F )

−[VF,D(1
2 + p

2) − VF,D(1
2 − p

2)] · IF(y, V·,D(1
2), F )}.

For Type D depth, we apply results for the scale curve IF to see that the IF of kF,D(p)
is a step function with jumps at three contours, one defining the interquartile region or
“shoulders”, and the other two demarking the annuli of equal probability p/2 within and
without the shoulders.
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5 Appendix: Brief background on depth functions

In passing from the real line to higher dimensional Euclidean space Rd, an effective way
to compensate for the lack of a natural order for d > 1 is to orient to a center. Depth
functions provide center-outward orderings in Rd, with depth decreasing with increasing
distance from the center. This supports the intended interpretation of the depth of a point x
as measuring its “centrality” (or, inversely, “outlyingness”). Since outlyingness is a globally
oriented feature, depth functions differ in role from probability density functions, which
describe local structure at points x. That is, the contours of equal probability density have
interpretability merely in a local sense: they characterize the amount of probability mass in a
neighborhood of a point. Using depth functions, on the other hand, we may organize points
into contours of equal outlyingness. This is basic to a proper generalization of univariate
quantile-based inference to the multivariate case.

Although there are earlier antecedents, the first depth function was the halfspace depth
introduced by Tukey (1975) and popularized by Donoho and Gasko (1992). This is given
by Type D depth functions defined in Section 1 with C the class of halfspaces in Rd. This
generates a corresponding affine equivariant notion of median as center. (In the univariate
case with F continuous, the halfspace depth of x is simply min{F (x), 1−F (x)}.) For C the
class of sets of the form {x ∈ Rd : (−1)νπi(x) > a}, where i = 1, . . . , d, ν = 0 or 1, and πi

projects x to its ith coordinate, we obtain a depth function which generates as center the
vector of coordinatewise medians. For a general treatment of Type D depth functions in an
equivalent form as “index functions”, along with further examples, see Small [19]. For C
a Vapnik-Červonenkis class, the almost sure uniform convergence of sample Type D depth
functions to their population counterparts is established in [26, Thm. B2].

Important other examples of depth function include the simplicial depth of Liu (1990), the
spatial depth of Vardi and Zhang (2000), and the projection depth introduced by Liu (1992)
and popularized by Zuo (2003). General overview papers have been cited in Section 1.
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