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Abstract

For nonparametric exploration or description of a distribution, the treatment of location,
spread, symmetry and skewness is followed by characterization of kurtosis. Classical moment-
based kurtosis measures the dispersion of a distribution about its “shoulders”. Here we con-
sider quantile-based kurtosis measures. These are robust, are defined more widely, and dis-
criminate better among shapes. A univariate quantile-based kurtosis measure of Groeneveld
and Meeden (1984) is extended to the multivariate case by representing it as a transform of
a dispersion functional. A family of such kurtosis measures defined for a given distribution
and taken together comprises a real-valued “kurtosis functional”, which has intuitive appeal
as a convenient two-dimensional curve for description of the kurtosis of the distribution.
Several multivariate distributions in any dimension may thus be compared with respect to
their kurtosis in a single two-dimensional plot. Important properties of the new multivariate
kurtosis measures are established. For example, for elliptically symmetric distributions, this
measure determines the distribution within affine equivalence. Related tailweight measures,
influence curves, and asymptotic behavior of sample versions are also discussed.

AMS 2000 Subject Classification: Primary 62G05 Secondary 62H05.
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1 Introduction

In developing a nonparametric description of a distribution, the natural step after treating
location, spread, symmetry, and skewness is to characterize kurtosis. This feature, however,
has proved more difficult to characterize and interpret, due to rather sophisticated linkage
with spread, peakedness and tailweight, and with asymmetry if present. Here we treat
kurtosis measures based on quantile functions, developing a general extension of existing
univariate results to the multivariate case.

The classical notion of kurtosis is moment-based, given in the univariate case by the
standardized fourth central moment κ = E{(X − µ)4}/σ4. Although sometimes construed
as simply a discriminator between heavy peakedness and heavy tails, it has become better
understood as a measure concerning the structure of the distribution in the region that falls
between, and links, the center and the tails. The “middle” of this region represents, in
picturesque language, the “shoulders” of the distribution. More precisely, writing

κ = Var

{(
X − µ

σ

)2
}

+

(
E

{(
X − µ

σ

)2
})2

= Var

{(
X − µ

σ

)2
}

+ 1, (1)

it is seen that κ measures the dispersion of (X−µ
σ

)2 about its mean 1, or equivalently the
dispersion of X about the points µ± σ, which are viewed as the “shoulders”. Thus classical
univariate kurtosis measures in a location- and scale-free sense the dispersion of probability
mass away from the shoulders, toward either the center or the tails or both. Rather than
treat kurtosis simply as tailweight, it is more illuminating to treat peakedness, kurtosis and
tailweight as distinct, although very much interrelated, descriptive features of a distribution.
As probability mass diminishes in the region of the shoulders and increases in either the
center or the tails or both, producing higher peakedness or heavier tailweight or both, the
dispersion of X about the shoulders increases. As this dispersion increases indefinitely, heavy
tailweight becomes a necessary component. See Finecan (1964), Chissom (1970), Darlington
(1970), Hildebrand (1971), Horn (1983), Moors (1986), and Balanda and MacGillivray (1988)
for discussion and illustration.

For the multivariate case, given a distribution in Rd with mean µ and covariance matrix
Σ, the classical univariate kurtosis is generalized (Mardia, 1970) to

κ = E{[(X − µ)′Σ−1(X − µ)]2},

i.e., the fourth moment of the Mahalanobis distance of X from µ. The multivariate extension
of (1) shows that κ measures the dispersion of the squared Mahalanobis distance of X from
µ about its mean d, or equivalently the dispersion of X about the points on the ellipsoid
(x − µ)′Σ−1(x − µ) = d, which surface thus comprises the “shoulders” of the distribution.
Higher kurtosis thus arises when probability mass is diminished near the shoulders and
greater either near µ (greater peakedness) or in the tails (greater tailweight) or both.
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Our purposes here concern quantile-based kurtosis measures, which in comparison with
moment-based types are robust, are defined more widely, and discriminate better among
distributional shapes. For symmetric univariate distributions, a quantile-based notion of
kurtosis was formulated by Groeneveld and Meeden (1984), whose definition we broaden
to allow asymmetry and then extend to the multivariate setting. Taken together over the
range of quantile levels, these kurtosis measures comprise a real-valued kurtosis functional,
which in turn may be represented as a transform of a dispersion functional based on the given
quantile function. With an appropriately modified notion of “shoulders”, each such quantile-
based kurtosis measure in the family compares the relative sizes of two regions, taken just
within and just without the shoulders, whose boundaries deviate from the shoulders by equal
shifts of an outlyingness parameter. In this fashion the trade-off between peakedness and
tailweight becomes characterized. Consequently, the moment- and quantile-based kurtosis
measures tend to extract complementary pieces of information regarding the nature of the
distribution in the region of “shoulders”. The kurtosis functional has special intuitive appeal
as a convenient two-dimensional curve for describing or comparing a number of multivariate
distributions in any dimension with respect to their kurtosis. For elliptically symmetric
distributions, and under suitable conditions on the chosen multivariate quantile function,
the kurtosis functional possesses the very useful property of actually determining the form
of the distribution up to affine transformation.

The above general formulation and key properties are developed in Section 2, along with
pictorial illustration. Several complementary topics are treated briefly in Section 3: related
tailweight measures, influence curves, asymptotic behavior of sample versions, and a new
test of multivariate normality. Further related topics such as the ordering of distributions
with respect to kurtosis, and the interrelations between kurtosis and skewness, are beyond
the focus and scope of the present paper and left for subsequent investigation.

2 Quantile-Based Kurtosis Measures

As seen above, classical moment-based kurtosis quantifies the dispersion of probability mass
in the region of the “shoulders” but does not characterize shape. Here we consider quantile-
based kurtosis measures which indeed provide shape information, via a kurtosis functional
that tends to serve as a discriminator between high peakedness and heavy tailweight, and
which for elliptical distributions characterizes the shape within affine equivalence.

2.1 The univariate case

In describing the shape of an asymmetric distribution, kurtosis becomes entangled with
skewness, a complication many authors avoid by restricting to symmetric distributions, or
to symmetrized versions of asymmetric distributions. See MacGillivray and Balanda (1988)
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and Balanda and MacGillivray (1990) for details. In a review of quantile-based skewness
measures, which have a long history, Groeneveld and Meeden (1984) show that reasonable
kurtosis measures may be generated in the case of a symmetric distribution F by applying
skewness measures to the distribution of the “folded” random variable |X − MF |, where
MF = F−1(1

2) denotes the median of F . In particular, application of a skewness functional
of Oja (1981),

b2(α) =
F−1(α) + F−1(1 − α) − 2 MF

F−1(1 − α) − F−1(α)
, 0 < α < 1

2 ,

to the distribution F|X−MF |(t) = 2FX(MF + t) − 1, via the corresponding quantile function
F−1
|X−MF |(p) = F−1

X (1
2 + p

2) − MF , yields the kurtosis functional

kF (p) =
F−1(3

4 − p
4) + F−1(3

4 + p
4) − 2 F−1(3

4)

F−1(3
4 + p

4) − F−1(3
4 − p

4)
, 0 < p < 1. (2)

See also Balanda and MacGillivray (1988, 1990), Groeneveld (1998) and Gilchrist (2000) for
relevant discussion.

Interpretation of (2). As with the classical measure κ, there is an orientation toward
“shoulders”, which now, however, are given not by µ ± σ, but by the 1st and 3rd quartiles.
It suffices to consider simply the right-hand side of the symmetric distribution, for which
the “shoulder” F−1(3

4) partitions a “central part” from a complementary “tail part”. The
numerator of (2) expresses the difference in the lengths `1(p) = F−1(3

4 + p
4) − F−1(3

4) and
`2(p) = F−1(3

4)−F−1(3
4 − p

4) of regions of equal probability p
4 taken just within and without

the “shoulder”, while the denominator is the sum of these two lengths. That is,

kF (p) =
`1(p) − `2(p)

`1(p) + `2(p)
, 0 < p < 1. (3)

Clearly, |kF (p)| ≤ 1, with values near +1 suggesting a pronounced shift of probability mass
away from the tails and toward the center, values near −1 suggesting a U-shaped distribution,
and values near 0 suggesting a rather uniform distribution. �

Below we extend this functional to the multivariate case. As a prelude, we now carry out
two steps which both clarify the univariate case and set the stage for appropriate general-
ization. The first step extends to the univariate asymmetric case, by combining right- and
left-hand versions of (2), leading to

[F−1(3
4 + p

4) + F−1(3
4 − p

4) − 2 F−1(3
4)] − [F−1(1

4 + p
4) + F−1(1

4 − p
4) − 2 F−1(1

4)]

[F−1(3
4 + p

4) − F−1(3
4 − p

4)] + [F−1(1
4 + p

4) − F−1(1
4 − p

4)]
, 0 < p < 1.

(4)

Interpretation of (4). The shoulders F−1(1
4) and F−1(3

4) bound a “central region” of
probability 1

2 which is complemented by a two-sided “tail region”. With `1(p) now the total
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length of the (two-sided) region of probability p/2 just without the central region and `2(p)
now the total length of the (two-sided) region of probability p/2 just within the central
region, the quantity kF (p) given by (4) may also be expressed in the form (3). �

Next we express kF (p) in terms of a well-known dispersion functional (e.g., Balanda and
MacGillivray, 1990),

dF (p) = F−1(1+p
2 ) − F−1(1−p

2 ), 0 ≤ p < 1, (5)

which for each p gives the width of the interquantile region of probability p with tails of
equal probability (1 − p)/2. By rearrangement of terms, (4) becomes

[F−1(3
4 + p

4) − F−1(1
4 − p

4)] + [F−1(3
4 − p

4) − F−1(1
4 + p

4)] − 2 [F−1(3
4) − F−1(1

4)]

[F−1(3
4 + p

4) − F−1(1
4 − p

4)] − [F−1(3
4 − p

4) − F−1(1
4 + p

4)]
, 0 < p < 1,

which corresponds to

kF (p) =
dF (1

2 − p
2) + dF (1

2 + p
2) − 2 dF (1

2)

dF (1
2 + p

2) − dF (1
2 − p

2)
, 0 < p < 1. (6)

Thus the kurtosis functional (4) may be represented succinctly in terms of dispersion rather
than in terms of quantiles (as already given in the symmetric case by Groeneveld, 1998). The
representation (6) in terms of dispersion provides a further way to understand and interpret
kF (p), just as we saw the moment-based κ to be usefully represented in terms of variance.
Further, this form for kF (p) is the appropriate one for generalization to the multivariate case,
as seen in the next subsection. Figure 1 shows (6) for the uniform distribution and several
common symmetric unimodal distributions.

Why look at plots of kF (p) instead of the underlying quantile function F−1(p) which
already contains all the information about F ? when the kurtosis functional kF (p) is a
function of the quantile function and so inherently contains no additional information? Plots
directly of the quantile function itself, even when standardized for location and scale, are
difficult to interpret, just as are plots of cumulative distribution functions. For the latter,
plots of densities are helpful. But even then it is very informative to exhibit specific key
features of a model by employing suitable descriptive measures. For such purposes, kurtosis
provides an important additional tool along with location, spread, and skewness. Of course,
one might use location centered quantile-quantile plots to compare a pair of distributions in
an overall way, but interpretation in terms of descriptive features is difficult to extract from
such a plot. Further, only two models can be compared at a time in such a plot. On the other
hand, a location, spread, skewness or kurtosis functional permits several distributions to be
compared with respect to the selected descriptive feature and within a single two-dimensional
plot.
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Figure 1: Kurtosis curves of some symmetric univariate distributions.
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2.2 The multivariate case

Analogues of (5) and (6) are developed as follows, utilizing notions of multivariate quantile
functions and associated central regions. First we select as the “center” MF any notion of
multidimensional median. Various possibilities are discussed in Small (1990), Liu, Parelius
and Singh (1999), and Zuo and Serfling (2000a). Next we consider any family of “central
regions” C = {CF (r) : 0 ≤ r < 1} which are nested about MF and reduce to MF as r → 0.
For x ∈ Rd, let r index the corresponding central region with x on its boundary, let v be the
unit vector toward x from MF , and put u = rv. Setting QF (u) = x, with QF (0) = MF ,
the points x ∈ Rd thus generate a quantile function QF (u) for u taking values in the unit
ball Bd in Rd. Here ‖u‖ denotes the outlyingness of the point x = QF (u), and the index r
may be interpreted as an outlyingness parameter describing the extent of the region CF (r).
As in Liu, Parelius and Singh (1999), quantile functions and central regions might arise in
connection with the contours of equal depth of a statistical depth function, with CF (r) the
central region having probability weight r. An alternative approach is given by the spatial
quantile of Chaudhuri (1996), also treated in Serfling (2003), where u is not the direction
between QF (u) and MF , but rather the expected direction from QF (u) to X having cdf F .
Other appropriate multivariate quantile functions may be considered as well.

A judicious choice of family of central regions is one whose contours follow the distribution
F in the sense of agreeing with outlyingness contours with respect to some meaningful notion
of outlyingness. A natural approach is provided by depth functions, as seen below.

For a chosen family C = {CF (r) : 0 ≤ r < 1}, a corresponding volume functional is
defined as

VF,C(r) = volume(CF (r)), 0 ≤ r < 1.

An increasing function of the variable r, VF,C(r) characterizes the dispersion of F in terms of
the expansion of the central regions CF (r). The volume functional plays in higher dimensions
the role of the univariate dispersion functional (5) based on interquantile central regions with
equiprobable tails.

As in the univariate case with the dispersion functional, the volume functional yields
other descriptive shape information besides measuring scale: namely, a kurtosis functional,
as a natural analogue of (6):

kF,C(r) =
VF,C(r)(

1
2 − r

2) + VF,C(r)(
1
2 + r

2) − 2 VF,C(r)(
1
2)

VF,C(r)(
1
2 + r

2) − VF,C(r)(
1
2 − r

2)
, 0 < r < 1. (7)

For convenience, in the sequel we will simply write kF (·), leaving C implicit.
The nature of kF (r) is easily understood via Figure 2, which exhibits regions A and B

for which kF (r) is represented as the difference of their volumes divided by the sum of their
volumes:

volume(B) − volume(A)

volume(B) + volume(A)
.
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The boundary of the central region CF (1
2) represents the “shoulders” of the distribution and

separates a designated “central part” from a corresponding “tail part”. The quantity kF (r)
thus measures the relative volumetric difference between a region A just within the shoulders
and a region B just without, in the central and tail parts, respectively, which are defined
by modifying equally the “outlyingness” parameter r = 1/2 of the shoulders by adding and
subtracting a given amount r/2.

Within certain typical classes of distribution we can attach intuitive interpretations to
ranges of values for kF (·). For example, if we confine attention to a class of distributions for
which either F is unimodal, or F is uniform, or 1−F is unimodal, then, for any fixed r, a value
of kF (r) near +1 suggests peakedness, a value near −1 suggests a bowl-shaped distribution,
and a value near 0 suggests uniformity. Thus higher kF (r) arises when probability mass is
greater in the “central part”, or greater in the “tail part”, or both, which is consistent with
the interpretation of the moment-based kurtosis measure.

It is clear from Figure 2 that this kurtosis functional can be defined without regard to
whether F is symmetric or not. Here, for generality, the central regions are “generically”
hand-drawn, and these particular contours only coincidentally reflect approximate spherical
symmetry. Of course, any actual asymmetry becomes reflected in the contours, and thus
asymmetry and kurtosis are somewhat confounded, as is well-known. Further, this figure
provides a clarification for the univariate case: (4) and (6) not only extend (2) to include
asymmetric distributions but actually represent in their own right the natural and most
intuitive way to define a quantile-based notion of kurtosis.

Example Kurtosis curves based on halfspace depth. In correspondence with the well-known
halfspace depth function,

D(x, F ) = inf{F (H) : x ∈ H ∈ H},

where H is the class of closed halfspaces of Rd, we may take MF as the point of maximal
halfspace depth and the central region CF,D(p) as the set of form {x : D(x, F ) ≥ α} having
probability weight p, for 0 ≤ p < 1. Thus here the probability weight p is interpreted as
an “outlyingness parameter”. Figure 3 exhibits the corresponding kurtosis curves kF with
central regions based on halfspace depth, for F given by d-variate normal distributions with
d = 1, 5, 10, 15, 20. Likewise, Figures 4 and 5 show kF for F given by various choices of 8-
variate symmetric Pearson Type II and Kotz type distributions, respectively. We note that
these F are elliptically symmetric (see Fang, Kotz and Ng, 1990) and, consequently, other
depth functions which like the halfspace depth are affine invariant yield the same (ellipsoidal)
central regions and hence the same kurtosis curves. In fact, for such F , the contours of equal
affine invariant depth agree with the contours of equal probability density. �
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Figure 2: Median M = MF and central regions CF (1
2 − r

2), CF (1
2), and CF (1

2 + r
2), with A =

CF (1
2) − CF (1

2 − r
2) and B = CF (1

2 + r
2) − CF (1

2).
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Figure 3: Kurtosis curves for normal distributions for d = 1, 5, 10, 15, 20, based on halfspace
or other affine invariant depth, or equivalently equidensity contours.
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Figure 4: Kurtosis curves for symmetric Pearson Type II distributions, d = 8, based on
halfspace or other affine invariant depth, or equivalently equidensity contours.
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or other affine invariant depth, or equivalently equidensity contours.
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2.3 Properties of the kurtosis functional

The following basic properties for kF (r) are straightforward (see Wang, 2003, for details).

1. −1 ≤ kF (r) ≤ 1.

2. kF (r) is defined without moment assumptions.

3. For uniform distributions, kF (r) ≡ 0.

4. For unimodal distributions, kF (r) > 0.

5. For bowl-shaped distributions (i.e., 1 − F unimodal), kF (r) < 0.

6. If VF,C(r)(r) is a continuous function of r, then

lim
r→1

kF (r) =





volume(support(F )) − 2VF,C(r)(
1
2
)

volume(support(F ))
, volume(support(F )) < ∞,

1, otherwise.

7. If VF,C(r)(r) is differentiable with nonzero derivative at r = 0.5, then

lim
r→0

kF (r) = 0.

Two very important further properties are established in the following results. The first states
that if the underlying quantile function QF (·) is affine equivariant, then the corresponding
kurtosis functional is affine invariant. For this we discuss

Equivariance of multivariate quantile functions. The condition for QF to be equivariant
with respect to the transformation x 7→ Ax + b is that

QG

(
Au

‖Au‖
‖u‖

)
= AQF (u) + b, u ∈ Bd, (8)

where G denotes the cdf of AX + b when X has cdf F . That is, the point Ax + b has
a quantile representation given by that of x similarly transformed, subject to a re-indexing
that keeps the indices in the unit ball and keeps the outlyingness of x unchanged under
transformation. In particular, setting u = 0, the medians satisfy MG = AMF +b. Further,
it is easily seen that the corresponding rth central regions satisfy

CG(r) = ACF (r) + b. (9)

If (8) holds for all nonsingular d × d A and all b ∈ Rd, then QF is an affine equivariant
functional of F . �
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Theorem 2.1 If kF (·) is based on an affine equivariant quantile function QF (·), then, for
each r, kF (r) is an affine invariant functional of F : for all nonsingular d × d A and all
b ∈ Rd,

kG(r) = kF (r), (10)

where G denotes the cdf of AX + b when X has cdf F .

Proof. Using (9), we have

VG,C(r) =

∫
1{y ∈ CG(r)} dy

=

∫
1{y ∈ AQF (r) + b} dy

=

∫
1{z ∈ CF (r)} | det(A)| dz

= | det(A)|VF,C(r)(r).

From this with the definition of kF (·), we readily obtain (10).

Our next result establishes a partial converse to Theorem 2.1. The distribution F is called
elliptically symmetric if it has a density of form

f(x) = |Σ|−1/2h((x − µ)′Σ−1(x − µ)), x ∈ Rd,

for a nonnegative function h(·) with
∫∞
0

td/2−1h(t)dt < ∞ and a positive definite matrix Σ.

Theorem 2.2 Let QF (·) be affine equivariant. Let X and Y have elliptically symmetric
distributions F and G, respectively, and suppose that

kG(r) = kF (r), 0 ≤ r < 1.

Then X and Y are affinely equivalent in distribution: Y
d
= AX + b for some nonsingular

matrix A and some vector b.

We will need the following lemma.

Lemma 2.1 Let F be elliptically symmetric and QF (·) affine equivariant. Then, for some
nondecreasing function γ(·),

(QF (u) − µ)′Σ−1(QF (u) − µ) = γ(‖u‖) (11)

and hence the corresponding central regions are ellipsoidal,

CF (r) = {x ∈ Rd : (x − µ)′Σ−1(x − µ) ≤ γ(r)}.
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Proof of Lemma 2.1. For X elliptically symmetric, Z = Σ−1/2(X − µ) is spherically
symmetric and thus, for any orthogonal d × d matrix T ,

T Z
d
= Z.

Fix a unit vector u0, for example u0 = (1, 0, . . . , 0)′. Then, for any u ∈ Bd(0), there exists
an orthogonal matrix U such that u = Uu0‖u‖. Let G denote the cdf of Z and H that of
UZ. Then affine equivariance of QF yields

QG(u) = QG(Uu0‖u‖) = QH(Uu0‖u‖) = UQG(u0‖u‖).

Defining
γ(r) = QG(u0 r)′QG(u0 r), 0 ≤ r ≤ 1,

which we note is nondecreasing due to nestedness of central regions about the median, we
thus have

QG(u)′QG(u) = QG(u0‖u‖)′QG(u0‖u‖) = γ(‖u‖).

On the other hand,

Σ−1/2(QF (u) − µ) = QG

(
Σ−1/2u

‖Σ−1/2u‖
‖u‖

)
,

and it follows that

(QF (u) − µ)′Σ−1(QF (u) − µ) = QG

(
Σ−1/2u

‖Σ−1/2u‖
‖u‖

)′

QG

(
Σ−1/2u

‖Σ−1/2u‖
‖u‖

)

= γ(‖u‖),

completing the proof. �

Proof of Theorem 2.2. For F elliptically symmetric as assumed, denote by FR and fR

the cdf and density of the squared Mahalanobis distance

R = (X − µ)′Σ−1(X − µ).

Then we have

fR(r) =
πd/2rd/2−1h(r)

Γ(d/2)

and
P (X ∈ CF (r)) = P (R ≤ γ(r)) = FR(γ(r)).
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It readily follows that

VF,C(r)(r) = volume(CF (r)) =
πd/2[F−1

R (r)]d/2|Σ|1/2

Γ(d/2 + 1)
,

from which we obtain

kF (r) =
[F−1

R (1
2 + r

2)]
d/2 + [F−1

R (1
2 − r

2)]
d/2 − 2[F−1

R (1
2)]

d/2

[F−1
R (1

2 + r
2)]

d/2 − [F−1
R (1

2 − r
2)]

d/2
. (12)

Likewise, for Y elliptically symmetric with parameters µ1, Σ1 and h1(·), we obtain an
expression for kG(r) similar to (12) with FR replaced by FR∗ , the cdf of

R∗ = (Y − µ1)
′Σ−1

1 (Y − µ1).

Equating the two expressions for kF (r) and kG(r), we obtain after some reduction

[F−1
R (1

2 + r
2)]

d/2

[F−1
R∗ (1

2 + r
2)]

d/2
=

[F−1
R (1

2 − r
2)]

d/2

[F−1
R∗ (1

2 − r
2)]

d/2
=

[F−1
R (1

2)]
d/2

[F−1
R∗ (1

2)]
d/2

:= qd/2, say.

This yields
F−1

R (r) = q F−1
R∗ (r), 0 ≤ r ≤ 1.

Equivalently,
FR∗(x) = FR/q(x), 0 ≤ x < ∞,

which leads to
q1/2Σ

−1/2
1 (Y − µ1)

d
= Σ−1/2(X − µ),

i.e.,

Y
d
= q−1/2Σ

1/2
1 Σ−1/2X + (µ1 − q−1/2Σ

1/2
1 Σ−1/2µ).

This completes the proof. �

In the univariate case, Theorem 2.2 reduces to the following simple result.

Corollary 2.1 Let X and Y have univariate symmetric distributions F and G, respectively,
and suppose that

kG(r) = kF (r), 0 ≤ r < 1,

with kF (·) defined by (2). Then Y
d
= aX + b for some a 6= 0 and b.

Theorem 2.2 establishes, for elliptically symmetric distributions, that the kurtosis
functional determines the distribution up to affine equivalence. An important potential
practical application is discussed below.
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3 Complements

In practice one must rely on sample versions of the kurtosis functional kF (·) and apply
related asymptotics. For example, one desires results such as uniform strong convergence of
sample versions to their population versions, and uniform weak convergence of corresponding
empirical processes to limiting Gaussian processes. Under some restrictions on F , such results
are available in Wang (2003).

Classical multivariate analysis relies heavily on the assumption of multivariate normality,
for which a variety of hypothesis tests has been developed. A number of these use the classical
moment-based notion of kurtosis (Mardia, 1970, Malkovich and Afifi, 1973, and Isogai, 1983,
for example). The kurtosis functional kF (·) introduced here lends itself to an alternative
approach based on Theorem 2.2. Details are provided in Wang (2003).

Quantile-based peakedness and tailweight measures are also of interest, and these are
discussed in Section 3.1 below. An intuitive way to understand the functional kF (·) and
related peakedness and tailweight measures is through their influence curves, which are
discussed in Section 3.2.

3.1 Peakedness and Tailweight Measures

As emphasized above, we interpret kurtosis as interrelated with peakedness and tailweight
but not equated with either. Here we discuss these related measures.

A family of tailweight measures based on a quantile function through its volume functional
is given by

tF (r, s) =
VF,C(r)(r)

VF,C(r)(s)
, 0 < r < s < 1, (13)

which reduce in the univariate case to ratios of evaluations of the dispersion functional (5)
at different points (see Balanda and MacGillivray, 1990, for discussion). Such an extension
using depth-based central regions is proposed by Liu, Parelius and Singh (1999), who use the
term “kurtosis” to mean tailweight and introduce a “fan plot” exhibiting in a single plot the
two-dimensional curves tF (r, s) for a fixed choice of r and selected choices of s. Thus several
multivariate distributions or data sets can be compared with respect to tailweight on the
basis of their fan plots. These authors also introduce other forms of depth-based tailweight
diagnostics, i.e, a Lorenz curve and a “shrinkage plot”.

Bickel and Lehmann (1975) suggest that a measure of “kurtosis” (meaning tailweight)
is given by any suitable ratio of two scale measures. Such a restriction is too restrictive for
the more refined notion of kurtosis emphasized in the present paper to be interpreted as a
tailweight measure. While typical tailweight measures are indeed of this form, the numerator
of (2), for example, is not a scale measure (see MacGillivray and Balanda, 1988, and Balanda
and MacGillivray, 1990, for discussion). Thus we properly distinguish our kurtosis measure
as not a tailweight measure.
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The term “peakedness” is traditionally considered synonymous with “concentration” and
equivalent (inversely) to “dispersion” or “scatter”. By this equivalence, peakedness too
is distinct from kurtosis. For key definitions and developments regarding peakedness and
dispersion, see in the univariate case Brown and Tukey (1946), Birnbaum (1948), and Bickel
and Lehmann (1976), and in the multivariate case Sherman (1955), Eaton (1982), Oja(1983),
Olkin and Tong (1988), and Zuo and Serfling (2000b).

3.2 Influence Curves

For quantile functions based on Type D depth (Zuo and Serfling, 2000a), which includes
the halfspace depth, it is shown in Wang and Serfling (2003) that the influence function
(IF) of the corresponding depth-based kurtosis kF (r) is a step function with jumps at the
boundaries of the (1

2 − r
2)th central region (upward), the 1

2th central region (downward),
and the (1

2 + p
2)th central region (upward). One of these contours defines the interquartile

region or “shoulders”, and the other two demark the annuli of equal probability r/2 within
and without the shoulders. This IF is bounded and thus has finite gross error sensitivity, in
contrast with the unbounded IF’s of moment-based kurtosis measures. In particular, for F
elliptically symmetric with h(·) continuous and D the halfspace depth, we have

IF(y, k·,D(r), F )

=
2Γ(d/2 + 1)

πd/2[(F−1
R (1

2 + r
2))

d/2 − (F−1
R (1

2 − r
2))

d/2]2
×

{[(F−1
R (1

2))
d/2 − (F−1

R (1
2 − r

2))
d/2] ·

(1
2 + r

2) − 1{(y − µ)′Σ−1(y − µ) ≤ F−1
R (1

2 + r
2)}

h(F−1
R (1

2 + r
2))

+[(F−1
R (1

2 + r
2))

d/2 − (F−1
R (1

2))
d/2] ·

(1
2 − r

2) − 1{(y − µ)′Σ−1(y − µ) ≤ F−1
R (1

2 − r
2)}

h(F−1
R (1

2 − p
2))

−[(F−1
R (1

2 + r
2))

d/2 − (F−1
R (1

2 − r
2))

d/2] ·
1
2 − 1{(y − µ)′Σ−1(y − µ) ≤ F−1

R (1
2)}

h(F−1
R (1

2))
}.

As noted earlier, other affine invariant depth functions also yield ellipsoidal central regions
in this case and hence the same kurtosis curves.

Influence functions are also available for the tailweight measures (13) and have similar
features (Wang, 2003). For discussion of IF’s of some kurtosis measures in the univariate
case, see Ruppert (1987) and Groeneveld (1998).
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