
AN MPI IMPLEMENTATION OF A SELF-SUBMITTINGPARALLEL JOB QUEUEJOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFTFa
toring example: fa
tor.
pp
• line 1: We in
lude the MPQueue header �le. This also in
ludes all the header �les neededto use MPI and the required parts of the Boost Serialization Library.
• line 5: Every job type has a positive integer identi�er. In this simple example we only haveone type of job.MPQswit
h:
• line 8: This fun
tion is
alled every time a new job needs to be pro
essed. In this example,the fun
tion is only exe
uted by worker nodes. The job.type variable determines the type ofthe job, although in this
ase there is only one type. Typi
ally a program has several kindsof jobs and so this fun
tion
ontains a swit
h statement. The job.data variable
ontains theserialized input of the job at the time the fun
tion is
alled. This variable is repla
ed bythe serialized output of the job. The output is the same as the input if the input is a prime,otherwise the output is empty.
• lines 9�10: The input is deserialized into the variable x.
• line 11: The worker
al
ulates the square root of x. We hope to split x into the produ
t oftwo integers that are as large as possible. Thus, the sear
h for these fa
tors starts at thesquare root of x.
• line 12: The loop tries to �nd a fa
tor y of x.
• line 13: Che
k if we have found a fa
tor.
• lines 14�15: The worker has found a fa
tor y. The worker submits two new jobs to the
urrent job queue to split the two fa
tors y and y/x.
• line 16: The split produ
es no output sin
e the further splitting of the found fa
tors is goingto be done by other workers. Hen
e the output is set to empty.
• line 17: The job is done.
• line 19: We did not �nd any divisors so x is a prime. Thus the un
hanged job.data
ontaining

x is returned to the boss node as the result of the job.main:
• line 21: The main fun
tion is exe
uted by every node.
• line 22: The MPI is initialized.
• line 23: The nodes are split into one boss and several workers. Only the boss returns fromthis fun
tion
all. The workers are ready to a

ept jobs.
• line 24: The boss
reates two job queues, one for storing jobs to do, and another for storingresults.
• line 25: The goal is to �nd the prime fa
torization of this number.
• line 26: The boss pla
es one splitting job into the job queue.
• line 27: The boss starts the supervision of the workers. The workers split numbers intofa
tors and submit these fa
tors to inqueue for further splitting. The workers return theprime fa
tors, whi
h the boss
olle
ts in the outqueue. The boss node spends the vastmajority of its running time in this fun
tion.1

2 JOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFT
• line 29: The boss retrieves all the prime fa
tors from the output queue.
• line 30�33: One of the prime fa
tors is retrieved and printed.
• line 35: The boss halts all the workers.

1 #in
lude "MPQueue . h"2 #in
lude "math . h"3 using namespa
e s td ;45
onst int SPLIT = 1 ; // on ly one job type , so no6 //
ases in MPQswit
h78 void MPQswit
h (Tjob & job) {9 int x ;10 f r om_st r i ng (x , job . data) ;11 int sqt = int (s q r t (double (x))) ;12 for (int y = sqt ; y > 1 ; y−−) // sear
h f o r d i v i s o r s13 i f (0 == x % y) { // found a d i v i s o r14 MPQsubmit (Tjob (SPLIT , x/y)) ; // submit two new j o b s15 MPQsubmit (Tjob (SPLIT , y)) ;16 job . data = "" ; // no output to re turn17 return ;18 }19 }2021 int main (int arg
 ,
har ∗argv [℄) {22 MPQinit (arg
 , argv) ;23 MPQstart () ; // on ly the boss r e turns24 Tjobqueue inqueue , outqueue ;25 int x = 1120581000; // f a
 t o r t h i s number26 inqueue . push (Tjob (SPLIT , x)) ; // add one job to the job queue27 MPQrunjobs (inqueue , outqueue) ; // sup e r v i s e queue pro
e s s ing28
out << x << " f a
 t o r s as : \ n" ;29 while (! outqueue . empty ()) { // ge t the r e s u l t s30 int f a
 t o r ; // one f a
 t o r31 f r om_st r i ng (f a
 to r , outqueue . f r on t () . data) ;32
out << f a
 t o r << " " ;33 outqueue . pop () ;34 }35 MPQstop () ;36 } Department of Mathemati
s and Statisti
s, Northern Arizona University, Flagstaff, AZ 86011-5717, USAE-mail address: john.neuberger�nau.edu, nandor.sieben�nau.edu, jim.swift�nau.edu

