
AN MPI IMPLEMENTATION OF A SELF-SUBMITTINGPARALLEL JOB QUEUEJOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFTNon-atta
king Queens example: queens.
pp
• line 6: A pla
ement of queens is stored in a ve
tor. In a valid pla
ement, every
olumn
ontains exa
tly one queen. The i-th entry of the ve
tor
ontains the lo
ation of the queenin the i-th
olumn.
• line 7: The total number of solutions is stored in this global variable.
• line 9: We work on a 20 × 20 board.�ts:
• lines 11�17: This fun
tion
he
ks if the queen in the last
olumn of a pla
ement interfereswith the other queens.MPQswit
h:
• line 21: Ea
h worker keeps a lo
al job queue of partial pla
ements.
• line 22: Solutions found by a worker are
ounted lo
ally.
• line 24: A worker re
eives a partial pla
ement and tries to extend it.
• line 25: The input is deserialized.
• line 26: The initial job re
eived from the boss is stored as the �rst job in the lo
al job queue.
• line 27: The worker �nishes all the jobs in the lo
al job queue.
• lines 28�29: The worker re
eives the �rst job in the lo
al job queue.
• line 30: The job
ontains a partial pla
ement of queens. The worker tries to add a queen inevery possible position of the next
olumn.
• line 31: If this parti
ular pla
ement of the new queen does not interfere with the otherqueens, then this new pla
ement is a possible extension of the original pla
ement.
• lines 32�33: If the extended pla
ement is a full pla
ement, then this is a new solution.
• line 35: The extended pla
ement is not yet a full pla
ement, so it is stored as a new job inthe lo
al job queue.
• lines 36�39: If the lo
al job queue size is large enough, then it is time to submit one of thelo
al jobs to the global job queue.
• lines 42�43: When the lo
al job queue is empty, the worker sends the number of solutionsit found to the boss node. This method is more e�
ient than the use of the output queuewould be, sin
e there is a large number of results and we are only interested in the sum ofthem.
• lines 45�48: The boss re
eives a result from a worker and updates the total number ofsolutions.main:
• line 56: The job queue originally
ontains an empty pla
ement
ontaining no queens.Department of Mathemati
s and Statisti
s, Northern Arizona University, Flagstaff, AZ 86011-5717, USAE-mail address: john.neuberger�nau.edu, nandor.sieben�nau.edu, jim.swift�nau.edu1

2 JOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFT1 #in
lude "MPQueue . h"2 #in
lude <deque>3 using namespa
e s td ;45 enum { NONE, PLACE, RESULT } ;6 typedef ve
 to r < int > Trow ;7 unsigned long int a l l s o l u t i o n s = 0 ; // t o t a l number s o l u t i o n s8 int over f low = 70 ; //
 o n t r o l l s l o
 a l queue s i z e9
onst int s i z e = 20 ; // s i z e o f the board1011 bool inl ine f i t s (
onst Trow & row) {12 int j = row . s i z e () − 1 ;13 for (int i = 0 ; i < j ; i++)14 i f ((row [i ℄ == row . ba
k ()) | | (abs (row [i ℄ − row [j ℄) == j − i))15 return fa l se ; // queens i n t e r f e r e16 return true ; // l a s t queen f i t s17 }1819 void MPQswit
h (Tjob & job) {20 Trow row ; // a p a r t i a l p la
ement21 deque < Trow > rows ; // l o
 a l j o b queue22 unsigned int s o l u t i o n s = 0 ; // l o
 a l number o f s o l u t i o n s23 swit
h (job . type) {24
ase PLACE : // add queen in next
olumn25 f r om_st r i ng (row , job . data) ;26 rows . push_ba
k (row) ; // popu la t e a l o
 a l j o b queue27 while (! rows . empty ()) { // s t i l l l o
 a l j o b s to do28 row = rows . ba
k () ;29 rows . pop_ba
k () ;30 for (row . push_ba
k (0) ; row . ba
k () < s i z e ; row . ba
k ()++)31 i f (f i t s (row)) // does the new queen f i t ?32 i f (row . s i z e () == s i z e) // a l l queens added33 s o l u t i o n s++; // found a new s o l u t i o n34 else {35 rows . push_ba
k (row) ; // add to l o
 a l j o b queue36 i f (rows . s i z e () > over f low) { // i f too many l o
 a l j o b s37 MPQsubmit (Tjob (PLACE, rows . f r on t ())) ; // send one to the boss38 rows . pop_front () ;39 }40 }41 }42 job = Tjob (RESULT, s o l u t i o n s) ; // prepare the r e s u l t43 MPQtask (job) ; // send r e s u l t to the boss44 break ;45
ase RESULT :46 f r om_st r i ng (s o l u t i on s , job . data) ; // update t o t a l s o l u t i o n s47 a l l s o l u t i o n s += s o l u t i o n s ; // wi th new r e s u l t48 job . data = "" ; // no r e s u l t to re turn49 }50 }5152 int main (int arg
 ,
har ∗argv [℄) {53 MPQinit (arg
 , argv) ;54 MPQstart () ;55 Tjobqueue inqueue , outqueue ;56 inqueue . push (Tjob (PLACE, Trow ())) ; // i n i t i a l empty pla
ement57 MPQrunjobs (inqueue , outqueue) ;58
out << a l l s o l u t i o n s << " s o l u t i o n s \n" ;59 MPQstop () ;60 }

