AN MPI IMPLEMENTATION OF A SELF-SUBMITTING
PARALLEL JOB QUEUE

JOHN M. NEUBERGER, NANDOR SIEBEN, AND JAMES W. SWIFT

MATRIX SQUARE EXAMPLE: square.cpp

line 4: There are three types of jobs in this example. The job types need to be positive integers, so
NONE is added to take the unused value of zero.

line 6: The variable matrix contains the input matrix. The variable square contains the square of
the input matrix, which is the result of the program.

line 7-10: This data type is used to send back one row of the result matrix, together with the position
of this row.

line 12-16: The BSL requires a simple template function for the serialization of each structure.

MPQswitch:

line 18: This function is executed by the workers with the job.type variable set to DATA or MUL-
TIPLY. It is also executed by the boss with job.type set to RESULT.

e line 19: The variable data contains one row of the result produced by a worker.
e line 20: Decide the type of the current job.

main:

lines 21-23: The input matrix is shared by all the workers. Each worker receives the matrix as a
DATA job. The workers deserialize it and store it locally in the variable matrix.

line 24-29: A worker calculates one row of the goal matrix.

line 25: The input is deserialized into data.pos. It tells the worker which row to compute.

line 26: The calculated row is stored in data.result.

lines 27-29: The row is calculated using standard matrix multiplication.

lines 30-31: The worker sends the calculated row to the boss.

line 33-36: The boss receives a row and puts in into the result matrix square.

line 34: The row is deserialized.

line 35: The row is placed at the appropriate location.

line 41: The MPI is initialized.

line 42: The nodes are split into one boss and several workers.

line 43: The example input matrix contains rows of length 10 containing a 1 at each position.

line 44: The input variable matrix is initialized.

line 45: The output variable square is resized to the correct dimensions.

line 46: The input matrix is sent to all the workers

lines 48-49: The job queue is filled with MULTIPLY jobs, each requesting the calculation of one
row of the goal matrix.

line 50: The boss starts the supervision of the workers. At the end of this work, the goal matrix
square will have been calculated. No other result is created, so outqueue is empty.

e lines 51-55: The goal matrix is printed.
e line 56: The boss halts all the workers.

DEPARTMENT OF MATHEMATICS AND STATISTICS, NORTHERN ARIZONA UNIVERSITY, FLAGSTAFF, AZ 86011-5717, USA
I-mail address: john.neuberger@nau.edu, nandor.sieben@nau.edu, jim.swift@nau.edu

© 00 N O UAs W

OOt Ot Ot O Ot Ot U s B R R R R R R B B W W W W W W W W W WY NNN NN NN NN R e
N OO R W N O © 00N W N QO 00N OO R WNHE QO 00N OO R WN QYW OO R W N O

2 JOHN M. NEUBERGER, NANDOR SIEBEN, AND JAMES W. SWIFT

#include "MPQueue.h"
using namespace std;

enum { NONE, DATA, MULTIPLY, RESULT };
typedef vector < int > Trow;

vector < Trow > matrix, square;
typedef struct {

int pos; // row index
Trow result; // output row
} Tdata;
template < class Archive > void // needed to serialize Tdata

serialize (Archive & ar, Tdata & data, const unsigned int version) {
ar & data.pos;
ar & data.result;

}
void MPQswitch (Tjob & job) {

Tdata data;

switch (job.type) {

case DATA: // receive the input matriz
from string (matrix, job.data);
break ;

case MULTIPLY:
from string (data.pos, job.data); // get the row position
data.result = Trow (matrix.size (), 0);

for (int j = 0; j < matrix.size (); j++) // calutate one row
for (int k = 0; k < matrix.size (); kt++)
data.result|j| += matrix|data.pos||[k]| * matrix|[k]|[Jj];

job = Tjob(RESULT, data); // prepare the result
MPQtask (job); // send result to boss
break;

case RESULT: // receive one output row
from string (data, job.data);
square|data.pos| = data.result;
job.data = ""; // mothing to return

}
}

int main (int argc, char xargv[]) {
MPQinit (argc, argv);
MPQstart ();
Trow row (10, 1); // input matriz containing
vector < Trow > mat (row.size (), row); // 1 at every entry
square.resize (row.size ()); // container for the output
MPQsharedata (Tjob(DATA, mat)); // input matriz sent to workers
Tjobqueue inqueue, outqueue;
for (int i = 0; I < mat.size (); i++) // every row is a separate job
inqueue. push (Tjob(MULTIPLY, i));
MPQrunjobs (inqueue, outqueue); // run the jobs
for (int 1 = 0; 1 < row.size (); i++) { // print the output matriz
for (int j = 0; j < row.size (); j++)
cout << square[I]|[j] << "_";
cout << "\n";

I{/IPQstop 0;

