
AN MPI IMPLEMENTATION OF A SELF-SUBMITTINGPARALLEL JOB QUEUEJOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFTMatrix square example: square.
pp
• line 4: There are three types of jobs in this example. The job types need to be positive integers, soNONE is added to take the unused value of zero.
• line 6: The variable matrix
ontains the input matrix. The variable square
ontains the square ofthe input matrix, whi
h is the result of the program.
• line 7�10: This data type is used to send ba
k one row of the result matrix, together with the positionof this row.
• line 12�16: The BSL requires a simple template fun
tion for the serialization of ea
h stru
ture.MPQswit
h:
• line 18: This fun
tion is exe
uted by the workers with the job.type variable set to DATA or MUL-TIPLY. It is also exe
uted by the boss with job.type set to RESULT.
• line 19: The variable data
ontains one row of the result produ
ed by a worker.
• line 20: De
ide the type of the
urrent job.
• lines 21�23: The input matrix is shared by all the workers. Ea
h worker re
eives the matrix as aDATA job. The workers deserialize it and store it lo
ally in the variable matrix.
• line 24�29: A worker
al
ulates one row of the goal matrix.
• line 25: The input is deserialized into data.pos. It tells the worker whi
h row to
ompute.
• line 26: The
al
ulated row is stored in data.result.
• lines 27�29: The row is
al
ulated using standard matrix multipli
ation.
• lines 30�31: The worker sends the
al
ulated row to the boss.
• line 33�36: The boss re
eives a row and puts in into the result matrix square.
• line 34: The row is deserialized.
• line 35: The row is pla
ed at the appropriate lo
ation.main:
• line 41: The MPI is initialized.
• line 42: The nodes are split into one boss and several workers.
• line 43: The example input matrix
ontains rows of length 10
ontaining a 1 at ea
h position.
• line 44: The input variable matrix is initialized.
• line 45: The output variable square is resized to the
orre
t dimensions.
• line 46: The input matrix is sent to all the workers
• lines 48�49: The job queue is �lled with MULTIPLY jobs, ea
h requesting the
al
ulation of onerow of the goal matrix.
• line 50: The boss starts the supervision of the workers. At the end of this work, the goal matrixsquare will have been
al
ulated. No other result is
reated, so outqueue is empty.
• lines 51�55: The goal matrix is printed.
• line 56: The boss halts all the workers.Department of Mathemati
s and Statisti
s, Northern Arizona University, Flagstaff, AZ 86011-5717, USAE-mail address: john.neuberger�nau.edu, nandor.sieben�nau.edu, jim.swift�nau.edu

1

2 JOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFT1 #in
lude "MPQueue . h"2 using namespa
e s td ;34 enum { NONE, DATA, MULTIPLY, RESULT } ;5 typedef ve
 to r < int > Trow ;6 ve
 to r < Trow > matrix , square ;7 typedef stru
t {8 int pos ; // row index9 Trow r e s u l t ; // output row10 } Tdata ;1112 template <
lass Ar
hive > void // needed to s e r i a l i z e Tdata13 s e r i a l i z e (Ar
hive & ar , Tdata & data ,
onst unsigned int ve r s i on) {14 ar & data . pos ;15 ar & data . r e s u l t ;16 }1718 void MPQswit
h (Tjob & job) {19 Tdata data ;20 swit
h (job . type) {21
ase DATA: // r e
 e i v e the inpu t matrix22 f r om_st r i ng (matrix , job . data) ;23 break ;24
ase MULTIPLY:25 f r om_st r i ng (data . pos , job . data) ; // g e t the row po s i t i o n26 data . r e s u l t = Trow (matrix . s i z e () , 0) ;27 for (int j = 0 ; j < matrix . s i z e () ; j++) //
 a l u t a t e one row28 for (int k = 0 ; k < matrix . s i z e () ; k++)29 data . r e s u l t [j ℄ += matrix [data . pos ℄ [k ℄ ∗ matrix [k ℄ [j ℄ ;30 job = Tjob (RESULT, data) ; // prepare the r e s u l t31 MPQtask (job) ; // send r e s u l t to boss32 break ;33
ase RESULT: // r e
 e i v e one output row34 f r om_st r i ng (data , job . data) ;35 square [data . pos ℄ = data . r e s u l t ;36 job . data = "" ; // noth ing to re turn37 }38 }3940 int main (int arg
 ,
har ∗ argv [℄) {41 MPQinit (arg
 , argv) ;42 MPQstart () ;43 Trow row (10 , 1) ; // inpu t matrix
on ta in ing44 ve
 to r < Trow > mat (row . s i z e () , row) ; // 1 at every entry45 square . r e s i z e (row . s i z e ()) ; //
on ta iner f o r the output46 MPQsharedata (Tjob (DATA, mat)) ; // inpu t matrix s en t to workers47 Tjobqueue inqueue , outqueue ;48 for (int i = 0 ; i < mat . s i z e () ; i++) // every row i s a separa t e job49 inqueue . push (Tjob (MULTIPLY, i)) ;50 MPQrunjobs (inqueue , outqueue) ; // run the j o b s51 for (int i = 0 ; i < row . s i z e () ; i++) { // p r i n t the output matrix52 for (int j = 0 ; j < row . s i z e () ; j++)53
out << square [i ℄ [j ℄ << " " ;54
out << "\n" ;55 }56 MPQstop () ;57 }

