
MORITA EQUIVALENCE OF C�-CROSSED PRODUCTSBY INVERSE SEMIGROUP ACTIONS AND PARTIAL ACTIONSN�andor SiebenAbstractMorita equivalence of twisted inverse semigroup actions and discrete twisted partial actions areintroduced. Morita equivalent actions have Morita equivalent crossed products.1. IntroductionMorita equivalence of group actions on C�-algebras was studied by Combes [Com], Echterho�[Ech], Curto, Muhly and Williams [CMW] and Kaliszewski [Kal]. We adapt this notion for bothBusby-Smith and Green type inverse semigroup actions, introduced in [Si1] and [Si2]. We showthat Morita equivalence is an equivalence relation and that Morita equivalent actions have Moritaequivalent crossed products. The close connection between inverse semigroup actions and partialactions [Si1], [Ex3], [Si2] makes it easy to �nd the notion of Morita equivalence for discrete twistedpartial actions. In Section 4 we work out some of the details of discrete twisted partial crossedproducts, continuing the work started in [Ex2]. The fact that Morita equivalent twisted partialactions have Morita equivalent crossed products will then follow from the connection with semigroupactions. In [AEE] Abadie, Eilers and Exel introduced Morita equivalence of crossed products byHilbert bimodules. We show that this de�nition is equivalent to our de�nition of Morita equivalenceon the common special case of partial actions by Z.The research for this paper was carried out while the author was a student at Arizona StateUniversity under the supervision of John Quigg. I thank Professor Quigg for his help during thewriting of this paper. 2. PreliminariesIn this section we recall some basic de�nitions to �x our terminology and notation. Our refer-ences for Hilbert modules are [JT] and [Lan].Let B be a C�-algebra. A (right) B-module is a complex vector space X with a bilinear map(x; b) 7! x � b : X � B ! X such that (x � b) � c = x � (b � c) for all x 2 X and b; c 2 B. A (right)inner-product B-module is a B-module with a map h�; �iB : X �X ! B, called a B-valued innerproduct, such that for all �; � 2 C, x; y; z 2 X and b 2 B we have(a) hx; �y + �ziB = �hx; yiB + �hx; ziB;(b) hx; y � biB = hx; yiBb;(c) hx; yi�B = hy; xiB ;(d) hx; xiB � 0;(e) hx; xi = 0 only if x = 0.In an inner product B-module we have a norm kxkB = khx; xiBk1=2 satisfying kx�bkB � kxkBkbkand khx; yiBk � kxk kyk for all x; y 2 X and b 2 B. A (right) Hilbert B-module is an inner-productB-module, which is complete in the norm k � kB . A Hilbert B-module X satisfyingspanfhx; yiB : x; y 2 Xg = Bis called full.Left modules are de�ned similarly, with the left inner product linear in the �rst variable. For aleft inner-product A-module we use the notation Ah�; �i for the A-valued inner product.Date. 5/15/19971991 Mathematics Subject Classi�cation. Primary 46L55.This material is based upon work supported by the National Science Foundation under Grant No.DMS9401253.



2 N�andor SiebenLemma 2.1. Let X be a full right Hilbert B-module and b 2 B. If x � b = 0 for all x 2 X, thenb = 0:Proof. For all x; y 2 X we have hx; yiBb = hx; y � biB = 0 which implies that b = 0 by fullness.Let A and B be C�-algebras. An A �B-bimodule AXB is a right B-module X which is also aleft A-module satisfying a � (x � b) = (a � x) � bfor all a 2 A, x 2 X and b 2 B. Note that a bimodule satis�es (�a) � (x � b) = a � (x � (�b)) for all� 2 C.De�nition 2.2. Let A and B be C�-algebras. A Hilbert A � B-bimodule is a bimodule AXBwhich is a left Hilbert A-module and a right Hilbert B-module such thatAhx; yi � z = x � hy; ziBfor all x; y; z 2 X.A Hilbert bimodule which is also full on both sides is called an imprimitivity bimodule.Note that for any Hilbert bimodule AXB there is a corresponding imprimitivity bimodule A0XB0where A0 = spanAhX;Xi and B0 = span hX;XiB .Lemma 2.3. If AXB is a Hilbert bimodule then(a) ha � x; yiB = hx; a� � yiB ;(b) Ahx � b; yi = Ahx; y � b�i;for all a 2 A, b 2 B and x; y 2 X.Proof. Part (a) follows from the following calculation:kha � x; yiB � hx; a� � yiBk2= k(ha � x; yiB � hx; a� � yiB )�(ha � x; yiB � hx; a� � yiB)k= khy; a � xiBha � x; yiB + ha� � y; xiBhx; a� � yiB� hy; a � xiBhx; a� � yiB � ha� � y; xiBha � x; yiBk= khy; a � x � ha � x; yiBiB + ha� � y; x � hx; a� � yiBiB� hy; a � x � hx; a� � yiB iB � ha� � y; x � ha � x; yiBiBk= khy; aAhx; a � xiyiB + ha� � y;A hx; xia� � yiB� hy; aAhx; xia� � yiB � ha� � y;A hx; a � xi � yiBk = 0 :Part (b) can be proved similarly.De�nition 2.4. The triple (�A; �; �B) is called an isomorphism between the Hilbert bimodulesAXB and CYD if �A : A ! C and �B : B ! D are C�-algebra isomorphisms and � : X ! Y is amap such that for all x; y 2 X and a 2 A, b 2 B we have(a) �(x � b) = �(x) � �B(b);(b) �B(hx; yiB) = h�(x); �(y)iD;(c) �(a � x) = �A(a) � �(x);(d) �A(Ahx; yi) = Ch�(x); �(y)i;(e) � is surjective.The following lemma shows that we can relax some of these conditions. Note that part (ii) isan improvement of [Kal, Lemma 1.1.3].



morita equivalent semigroup actions 3Lemma 2.5. With the notations of De�nition 2.4 we have(i) if � satis�es (b) then it is a linear isometry;(ii) if � satis�es (b) then it also satis�es (a);(iii) if � satis�es (b) and (c) and CYD is an imprimitivity bimodule then � also satis�es (d) and (e)so that it is an isomorphism between X and Y .Proof. An easy calculation using (b) and the linearity of �B shows that k�(�a + �b) � ��(a) ���(b)k2 = 0. It is also an isometry sincek�(x)k2 = kh�(x); �(x)iDk = k�B(hx; xiB)k = khx; xiBk = kxk2 :Part (ii) follows from the following calculation:k�(x � b)� �(x) � �B(b)k2= kh�(x � b) � �(x) � �B(b); �(x � b)� �(x) � �B(b)iDk= kh�(x � b); �(x � b)iD � h�(x � b); �(x) � �B(b)iD� h�(x) � �B(b); �(x � b)iD + h�(x) � �B(b); �(x) � �B(b)iDk= k�B(hx � b; x � biB) � �B(hx � b; xiB)�B(b)� �B(b�)�B(hx; x � biB) + �B(b�)�B(hx; xiB)�B(b)k = 0 :To show (iii) let Z = �(X). Then we haveD = �B(B) = �B(span hX;XiB) � span �B(hX;XiB)= span h�(X); �(X)iD � span hZ;ZiD ;and so D = span hZ;ZiD. Z is a left C-module sinceC �Z = �A(A) � �(X) � (�A(A) � �(X))= �(A �X) = �(X) = Z :Z is also a right D-module sinceZ �D � �(X) � span h�(X); �(X)iD= span (Ch�(X); �(X)i � �(X)) � Z :Hence Z is a closed subbimodule of Y with full right inner product, and so Z = Y by the Rie�elcorrespondence. This shows that �(X) = Y since � is an isometry between Banach spaces. Forx; y; z 2 X we have �A(Ahx; yi)�(z) = �(Ahx; yi � z) = �(x � hy; ziB)= �(x)�B(hy; ziB ) = �(x)h�(y); �(z)iD= Ch�(x); �(y)i � �(z) ;which implies condition (d) by Lemma 2.1.Note that the proof of (iii) shows that if � satis�es (b) and (c) then � is an isomorphism of Xonto a C �D Hilbert subbimodule of Y . Also note that the statements of the lemma remain trueif we interchange condition (b) with (d) and condition (c) with (a).An equivalent characterization of isomorphisms between the imprimitivity bimodules AXB andCYD is a Banach space isomorphism � : X ! Y satisfying the ternary homomorphism identity, thatis, �(x � hy; ziB) = �(x) � h�(y); �(z)iDfor all x; y; z 2 X.



4 N�andor SiebenLemma 2.6. (id; �; id) is an isomorphism between the Hilbert bimodules AXB and AYB if andonly if (id; �; id) is an isomorphism between the corresponding imprimitivity bimodules A0XB0 andC0YD0 .Proof. If (id; �; id) is an isomorphism between AXB and AYB thenA0 = spanAhX;Xi = span Ah�(X); �(X)i = spanAhY; Y i = C0 :Similarly, B0 = D0 and so (id; �; id) is an isomorphism between A0XB0 and C0YD0 . Now supposethat (id; �; id) is an isomorphism between A0XB0 and C0YD0 . If a 2 A and x 2 X then x = i � x0 forsome i 2 A0 and x0 2 X and so�(a � x) = �(a � (i � x0)) = ai � �(x0) = a � �(i � x0) = a � �(x) :Hence (id; �; id) is an isomorphism between AXB and AYB by Lemma 2.5.3. Morita equivalent twisted actionsRecall from [Rie] that if AXB is an imprimitivity bimodule then there is a bijective correspon-dence (often called the Rie�el correspondence) between closed subbimodules of X and closed idealsof A. If I is a closed ideal of A then I �X is a closed subbimodule of X. Note that by the Cohen-Hewitt factorization theorem we do not have to take the closure of I �X. SimilarlyX � J is a closedsubbimodule of X if J is a closed ideal of B. On the other hand if Y is a closed subbimodule ofX then IYJ is an imprimitivity bimodule, where I is the closed span of AhY; Y i and J is the closedspan of hY; Y iB. We call IYJ an imprimitivity subbimodule of X.De�nition 3.1. A partial automorphism of the imprimitivity bimodule AXB is an isomorphismbetween two imprimitivity subbimodules of X. We denote the set of partial automorphisms byPAut(X).Let A be a C�-algebra, and let S be a unital inverse semigroup with idempotent semilattice E,and unit e. Recall from [Si2] that a Busby-Smith twisted action of S on A is a pair (�; v), where forall s 2 S, �s : As� ! As is a partial automorphism, that is, an isomorphism between closed idealsof A, and for all s; t 2 S, vs;t is a unitary multiplier of Ast, such that for all r; s; t 2 S we have(a) Ae = A;(b) �s�t = Ad vs;t � �st;(c) vs;t = 1M(Ast) if s or t is an idempotent;(d) �r(avs;t)vr;st = �r(a)vr;svrs;t for all a 2 Ar�Ast.We refer to condition (d) as the cocycle identity.Also recall that a covariant representation of a Busby-Smith twisted action (A; S; �; v) is a triple(�; V;H), where � is a nondegenerate representation of A on the Hilbert space H and Vs is a partialisometry for all s 2 S, such that for all r; s 2 S we have(a) Vs has initial space �(As�)H and �nal space �(As)H;(b) VrVs = �(vr;s)Vrs;(c) �(�s(a)) = Vs�(a)V �s for a 2 As� .De�nition 3.2. The Busby-Smith twisted actions (A; S; �; u) and (B; S; �; v) areMorita equivalentif there is an imprimitivity bimodule AXB and a map s 7! (�s; �s; �s) : S ! PAut(X), such that�s : Xs� ! Xs where Xs := As �X = X �Bs and for all s; t 2 S we have�s�t = us;t � �st(�) � v�s;t :We say that (X;�) is a Morita equivalence between (�; u) and (�; v), and we write(A; S; �; u) �X;� (B; S; �; v) :Note that �s�t and �st have the same range Xst and so Xst � Xs.



morita equivalent semigroup actions 5Lemma 3.3. Using the notations of De�nition 3.2 we have(a) �s(Xs� �Bt) = Xst;(b) �s(As� �Xt) = Xst;(c) span�s(AhXs� ; Xti) = Ast;for all s; t 2 S.Proof. We know from [Si2] that �s(Bs�Bt) = Bst and so we have�s(Xs� �Bt) = �s(Xs� �Bs�Bt) = �s(Xs� ) � �s(Bs�Bt) = Xs �Bst = Xst ;showing (a). A similar calculation shows (b). Finally (c) follows from the calculation:span�s(AhXs� ; Xti) = span�s(AhAs� �Xs� ; Xti) = span�s(AhXs� ; As� �Xti)= span Ah�s(Xs� ); �s(As� �Xt)i = spanAhXs; Xsti = Ast :Proposition 3.4. Morita equivalence of Busby-Smith twisted actions is an equivalence relation.Proof. It is easy to see that (A; S; �; u) �A;� (A; S; �; u). It is also easy to check that if(A; S; �; u) �X;� (B; S; �; v) then (B; S; �; v) � ~X;~� (A; S; �; u), where ~�(~x) = �(x)~. To showtransitivity, suppose (A; S; �; u) �X;� (B; S; �; v) �Y; (C; S; 
; w) :Let Z be the balanced tensor product X 
B Y , that is, the Hausdor� completion of X � Y in theC-valued inner product determined byhx1 
 y1; x2 
 y2iC := hy1; hx1; x2iB � y2iC :It is well known that Z is an A � B imprimitivity bimodule. We are going to de�ne a map � suchthat (A; S; �; u) �Z;� (C; S; 
; w) : For all s 2 S we haveZs = (X 
B Y ) �Cs = X 
B (Y �Cs)= X 
B (Bs � Ys) = (X �Bs)
B Ys = Xs 
B Ys :For all s 2 S the map �0 : Xs� � Ys� ! Zs de�ned by �0(x; y) = �s(x)
  s(y) is bilinear, and so wehave a linear map �00s : Xs� � Ys� ! Zs satisfying �00s�(x 
 y) = �0(x; y). The following computationsu�ces to check that �00 is isometric:h�00s (x1 
 y1); �00s (x2 
 y2)iC = h�s(x1) 
  s(y1); �s(x2)
  s(y2)iC= h s(y1); h�s(x1); �s(x2)iB �  s(y2)iC= h s(y1);  s(hx1; x2iB � y2)iC= 
s(hy1; hx1; x2iB � y2iC)= 
s(hx1 
 y1; x2 
 y2iC) :So �00s extends uniquely to an isometric linear map �s : Zs� ! Zs. The above calculation also showsthat �s satis�es De�nition 2.4(b), and it is routine to check De�nition 2.4(c). Finally for all s; t 2 Swe have �s�t = �s�t 
  s t = us;t � �st(�) � v�s;t 
 vs;t �  st(�) �w�s;t= us;t � �st(�)
 v�s;tvs;t �  st(�) �w�s;t = us;t � �st �w�s;t :



6 N�andor SiebenRecall [BGR] that two projections p and q in the multipliers of a C�-algebra C are calledcomplementary if p + q = 1. The two corners pCp and qCq are also called complementary. Theprojection p is called full if the corner pCp is full, which means pCp is not contained in any properideal of C or equivalently CpC is dense in C. If the C�-algebras A and B are Morita equivalentthen they are isomorphic to complementary full corners of the linking C�-algebraC = � A X~X B �of AXB , where ~X is the reverse module of X and the operations on C are de�ned by� a x~y b �� c z~w d� = �ac+ Ahx;wi a � z + x � d~y � c+ b � ~w hy; ziB + bd��a x~y b�� = � a� y~x b�� :In fact, we can identify A and B with pCp and qCq respectively, wherep = �1M(A) 00 0� and q = �0 00 1M(B)� :Here we identi�ed the multiplier algebra M (C) with�M (A) M (X)M ( ~X) M (B)�as in [ER, Appendix]. On the other hand if two C�-algebras are isomorphic to complementary fullcorners of a C�-algebra, then they are Morita equivalent.Note that if the actions (A; S; �; u) and (B; S; �; w) are Morita equivalent then the C�-algebrasA and B are also Morita equivalent. We have a natural action of S on the linking algebra of A andB:Proposition 3.5. If (A; S; �; u) �X;� (B; S; �; v) then the formulas
s� a x~y b � = � �s(a) �s(x)�s(y)~ �s(b) � ; ws;t = �us;t 00 vs;t�de�ne a Busby-Smith twisted action (C; S; 
; w) on the linking algebra C of AXB . Moreover,(Y; 
(�)jY ) implements a Morita equivalence between (C; S; 
; w) and (B; S; �; v), where Y =� 0 X0 B � � C :Proof. It is well-known that CYB is an imprimitivity bimodule if Y inherits the inner products fromthe C�-algebra C, that is, Chy1; y2i = y1y�2 for all y1; y2 2 Y and h� 00 xb � ; �00 zd�iB = hx; ziB + b�d forall x; z 2 X and b; d 2 B. It is easy to check thatCs = �As Xs~Xs Bs �is the closed ideal of C which is in Rie�el correspondence with Bs via the imprimitivity bimoduleCYB . The calculation
s �� a x~y b �� c z~w d�� = ��s(ac) + �s(Ahx;wi) �s(a � z + x � d)�s(c � y + w � b)~ �s(hy; ziB + bd)�= � �s(a) �s(x)�s(y)~ �s(b) �� �s(c) �s(z)�s(w)~ �s(d)�= 
s� a x~y b �
s� c z~w d�



morita equivalent semigroup actions 7shows that 
s is a homomorphism for all s 2 S. It is easy to verify that 
s preserves adjoints and isbijective, hence is an isomorphism between Cs� and Cs. We only check the cocycle identity in thede�nition of Busby-Smith twisted actions. It su�ces to show that for a 2 Ar�Ast, b 2 Br�Bst andx, y 2 Xr� \Xst, 
r �� a x~y b �ws;t� = � �r(aus;t)ur;st �r(x � vs;t)vr;st�r(us;t � y)~ � ur;st �r(bvs;t)vr;st �and 
r � a xy� b�wr;swrs;t = � �r(a)ur;surs;t �r(x)vr;svrs;t�r(y)~ � ur;surs;t �r(b)vr;svrs;t �are the same. The diagonals are clearly equal. We check the upper right corner. Since x = xr � arfor some xr 2 Xr� and ar 2 Ar� we have�r(xvs;t)vr;st = �r(xr � arvs;t) = �r(xr)�r(arvs;t)= �r(xr)�r(ar)vr;svrs;t = �r(x)vr;svrs;t :The equality of the lower left corners follows similarly. For the other part, the conditions of De�nition3.2 for the pair (Y; 
(�)jY ) follow from routine calculations.A similar proof shows that in the previous theorem (C; S; 
; w) and (A; S; �; v) are also Moritaequivalent. Recall [Si2] that two Busby-Smith twisted actions (�; u) and (�;w) of S on A are exteriorequivalent if for all s 2 S there is a unitary multiplier Vs of Es such that for all s; t 2 S(a) �s = Ad Vs � �s;(b) ws;t = Vs�s(1M(Es� )Vt)us;tV �st.Theorem 3.6. If the twisted actions (A; S; �; u) and (A; S; �; w) are exterior equivalent, then theyare also Morita equivalent.Proof. Let V implement an exterior equivalence between (�; u) and (�;w). We show that (A; �)implements the Morita equivalence, where �s : As� ! As is de�ned by �s(a) = �s(a)V �s . Fora; b; x 2 As� we have �s(x � b) = �s(x)�s(b)V �s = �s(x)V �s �s(b) = �s(x) � �s(x)verifying De�nition 2.4(a). If x; y 2 Xs� = As� , then we have�s(Ahx; yi) = �s(xy�) = �s(x)V �(�s(y)V �)� = Ah�s(x); �s(y)i;which veri�es Condition 2.4(d). By the note after Lemma 2.5, it remains to observe that if x 2X(st)� = A(st)� then ��s�t�(x) = �s(�t(x)V �t )V �s= �s(�t(x))us;tV �stVstu�s;t�s(1M(As� )Vt)�V �s= us;t�st(x)w�s;t :Recall [Rie] that if AXB is an imprimitivity bimodule then every representation � of B on aHilbert space H induces a representation �X of A on the Hilbert space HX de�ned by �X(a)(x
�) =(a � x)
 �, where HX is the Hausdor� completion X 
B H of the algebraic tensor product X �Hin the seminorm generated by the semi-inner product(x
 � j y 
 �) := (�(hy; xiB)� j �)H = (� j �(hx; yiB)�))H :Note that (x � b) 
 � = x 
 �(b)� for all x 2 X, b 2 B and � 2 H. The following is the semigroupversion of [Com, Section 2].



8 N�andor SiebenTheorem 3.7. If (A; S; �; u) �X;� (B; S; �; v) then every covariant representation (�; V;H) of (�; v)induces a covariant representation (�X ; V X ;HX) of (�; u) on the Hilbert space HX = X
BH, where�X is as above and V Xs (x
 �) = �s(x) 
 Vs(�)for all elementary tensors x
 � 2 HXs� = Xs� 
B H.Proof. First note that if x 2 Xs and � 2 H then x = y � b for some y 2 Xs and b 2 Bs, hencex 
 � = (y � b) 
 � = y 
 �(b)�. So HXs = Xs 
B Hs where Hs = �(Bs)H = VsH. To show theexistence of V Xs , de�ne T : Xs� �H ! Xs 
B Hs by T (x; �) = �s(x)
 Vs�. T is clearly bilinear sothere is a unique linear map T 0 : Xs� �Hs� ! Xs� 
B Hs� such that T 0(x
 �) = T (x; �). We checkthat T 0 is isometric. For x; y 2 Xs� and �; � 2 Hs we have(T 0(x
 �) j T 0(y 
 �))HX = (�s(x)
 Vs� j �s(y) 
 Vs�)HX= (�(h�s(y); �s(x)iB)Vs� j Vs�)H= (�(�s(hy; xiB))Vs� j Vs�)H= (Vs�(hy; xiB )� j Vs�)H= (�(hy; xiB )� j �)H = (x
 � j y 
 �)HX :So T 0 determines an isometry T 00 from HXs� to HXs . If we de�ne V Xs to be T 00 on HXs� and 0 on(HXs�)? then V Xs is a partial isometry with initial space HXs� = (As� �X) 
B H = �X (As� )HX . Itfollows that the �nal space of V Xs is �X(As)HX .We can check the covariance condition for elementary tensors. Let a 2 As� and x
 � 2 X �H.Since H = Hs � H?s , we only need to consider the two cases � 2 Hs and � 2 H?s . If � 2 Hs then� = �(ab)� for some a; b 2 As and � 2 H. Hence x 
 � = x � a
 �(b)� and so we can assume thatx 2 Xs. Thus, V Xs �X (a)(V Xs )�(x
 �) = �s(a � ��1s (x)) 
 VsV �s (�))= (�s(a) � x)
 � = �X (�s(a))(x 
 �) :On the other hand if � 2 (Hs)? then for all y 2 Xs and � 2 H we have(x
 � j y 
B �)H = (� j �(hx; yiB)�)H = 0and so x
 � 2 (HXs )?. This means (V Xs )�(x
 �) = 0. Since �s(a) � x is in Xs it is of the form y � bfor some y 2 X and b 2 Bs. Thus,�X (�s(a))(x
 �) = (�s(a) � x)
 � = y 
 �(b)� = 0as well.Of course the inducing process works the other way too, that is, every covariant representationof � induces a covariant representation of �.Recall [Si2] that the crossed product A ��;u S of a Busby-Smith twisted action (A; S; �; u) isthe Hausdor� completion of the Banach �-algebraL� = fx 2 l1(S;A) : x(s) 2 As for all s 2 Sgwith operations�x � y�(s) = Xrt=s�r(��1r (x(r))y(t))ur;t and x�(s) = us;s��s(x(s�)�)



morita equivalent semigroup actions 9in the C�-seminorm k � k� de�ned bykxk� = supfk(� � V )(x)k : (�; V ) is a covariant representation of (A; S; �; u)g:Alternatively, generalizing Paterson's approach [Pat] to the twisted case, we could de�nekxk� = supfk�(x)k : � is a coherent representation of L�gwhere a representation � of L� is coherent if it satis�es �(a�ss�) = �(a�e) for all s 2 S. So if I� isthe closed ideal generated by elements of the form a�ss� � a�e, then the crossed product A�� S isthe enveloping C�-algebra of L�=I�.If �s denotes the characteristic function of fsg, then a�s is an element of L� for all a 2 As.The canonical image of a�s in A ��;u S will be denoted by a�s. Then A ��;u S is the closed spanof fa�s : a 2 As; s 2 Sg. Note that we have the following formulas:as�s � at�t = �s(��1s (as)at)us;t�st(a�s)� = ��1s (a�)u�s�;s�s� :The idea of the proof of the following theorem comes from [Com], [CMW] and [Kal].Theorem 3.8. If (A; S; �; u) and (B; S; �; v) are Morita equivalent actions, then the crossedproducts A ��;u S and B ��;v S are also Morita equivalent.Proof. Let (X;�) be a Morita equivalence, and let (
; w) be the Busby-Smith twisted action of Son the linking algebra C of AXB as in Proposition 3.5. It su�ces to show that A��;uS and B��;v Sare complementary full corners of C �
;w S. Letp = �1M(A) 00 0� and q = �0 00 1M(B)� :It is clear that p�e and q�e are complementary projections in M (C �
;w S). We show that q�e is afull projection. If c = � as xs~ys bs � 2 Cs and d = �at xt~yt bt � 2 Ctthen c�s � q�e � d�t = �us;t�s(Ah��1s (xs); yti) �s(��1s (xs) � bt) � vs;t�s(��1s (bs) � yt)~ � us;t �s(��1s (bs)bt)vs;t � �st :We can check fullness on the four corners, and this can be done easily using Lemma 3.3. A similarcalculation shows that p�e is also full.Now we show that B��;vS = q�e�(C�
;wS)�q�e. We use the fact that B��;vS is the Hausdor�completion L� k�k� of L� in the greatest C�-seminorm k � k� coming from covariant representationsof (�; v), while C�
;w S is the Hausdor� completion L
 k�k
 of L
 in the greatest C�-seminorm k �k
coming from covariant representations of (
; w). Sinceq�e(C �
;w S)q�e = q�e(L
 k�k
 )q�e = q�e � L
 � q�e k�k
 = L� k�k
 ;it su�ces to show that the seminorms k � k� and k � k
 are the same on L� , where we regard L� asa subspace of L
 . If (�; V ) is a covariant representation of (
; w) then (�jB; �(q)V ) is a covariantrepresentation of (�; v) and so k � k
 � k � k� on L� . On the other hand, a covariant representation



10 N�andor Sieben(�; V;H) of (�; v) induces a covariant representation (�Y ; V Y ;HY ) of (
; w), where Y = � 0 X0 B �,HY = Y
BH and �Y � a x~y b ���0 z0 d�
 �� = �0 a � z + x � d0 hy; ziB + bd�
 � ;V Ys ��0 z0 d�
 �� = � 0 �s(z)0 �s(d)�
 Vs� :The image of � 0 00 b ��s 2 L� under �Y � V Y evaluated at an elementary tensor � 0 z0 d�
 � of HY is�Y �0 00 b�V Ys �� 0 z0 d�
 �� = �0 00 b�s(d)�
 Vs�= � 0 00 b�
 �(�s(d))Vs�= � 0 00 b�
 Vs�(d)� :If d 2 B and � 2 H thenk� 0 00 d�
 �k2HY = � � 0 00 d�
 � j � 0 00 d �
 ��HY= (�(h� 0 00 d� ;� 0 00 d�iB)� j �)H= (�(d�d)� j �)H = (�(d)� j �(d)�)H= k�(d)�k2H :Hence if bi 2 Bsi for all i = 1; : : : ; n and f =Pni=1 bi�si 2 L� thenk�Y � V Y (f)� � 0 00 d�
 ��kHY = k� � V (f)�(d)�kH :On the other handk� � V (f)k = supf k� � V (f)�(d)�kHk�(d)�kH : d 2 B; � 2 Hg= supf k�Y � V Y (f)� � 0 00 d�
 ��kHYk� 0 00 d�
 �kHY : d 2 B; � 2 Hg� k�Y � V Y (f)kwhich implies that k�k
 � k�k� on L� . A similar argument shows that A��;uS = p�e�(C�
;wS)�p�e.The proof also shows that if we use the notation X �u;�;v S := p�e(C �
;w S)q�e or simplyX � S, then A��;u S �X�S B ��;v S :We now have two di�erent ways to induce representations of A �� S from representations ofB �� S. The next result shows that they are essentially the same. For simplicity we only state theuntwisted version of the result because that is all we need later. The proof closely follows that ofsimilar results in [Ech] and [Kal], and goes back ultimately to [Com].



morita equivalent semigroup actions 11Proposition 3.9. If (A; S; �) �X;� (B; S; �) and � � V is a representation of B �� S on H, thenthe induced representations �X � V X and (� � V )X��S are unitarily equivalent.Proof. Let Y = X �� S. The mapT 0 : X �H ! HY de�ned by T 0(x; �) = � 0 x0 0 � �e 
 �is bilinear and so there is a unique linear map T 00 : X � H ! HY such that T 00(x 
 �) = T 0(x; �).We check that T 00 is isometric. For x; y 2 X and �; � 2 H we have(T 00(x
 �) j T 00(y 
 �))HY = �� 0 x0 0� �e 
 � j � 0 y0 0 � �e 
 ��HY= �(� � V )�D� 0 y0 0 � �e;� 0 x0 0 � �eEB��S� � j ��H= ��� � V �(hy; xiB�e)� j ��H = ��(hy; x; iB)� j ��H= (x
 � j y 
 �)HX :So we have an isometry T : HX ! HY such that T (x
 �) = � 0 x0 0� �e
 �. T is onto since if xs 2 Xsand � 2 H then there are x 2 X and b 2 Bs such that xs = x � b and so�0 xs0 0 � �s 
 � = �0 x0 0� �e�0 00 b� �s 
 � = ��0 x0 0� �e � b�s�
 �= �0 x0 0� �e 
 � � V (b�s)� = T (x
 �(b)Vs�) :Carrying the above calculation a little further, we have� 0 xs0 0 � �s 
 � = T ((x � b) 
 Vs�) = �0 xs0 0 � �e 
 Vs� ;and we need this fact in the veri�cation that T intertwines �X � V X and (�� V )Y : for a 2 As andx
 � 2 X �H we have(� � V )Y �a�s�T (x
 �) = �a�s � � 0 x0 0� �e�
 �= �� a 00 0� �s � 0 x0 0 � �e�
 � = 
s �
�1s � a 00 0�� 0 x0 0 �� �s 
 �= �0 �s(��1s (a) � x)0 0 � �s 
 � = � 0 �s(��1s (a) � x)0 0 � �e 
 Vs�= T (�s(��1s (a) � x)
 Vs�) = TV Xs �X (��1s (a))(x 
 �)= T�X(a)V Xs (x
 �) = T (�X � V X)�a�s�(x
 �) :Let A be a C�-algebra, let S be a unital inverse semigroup with idempotent semilattice E, andlet N be a normal Cli�ord subsemigroup of S. Recall from [Si2] that a subsemigroup N of S is anormal Cli�ord subsemigroup if it is normal, that is, E � N and sNs�� N , and it is also Cli�ord,that is, n�n = nn� for all n 2 N . Also recall from [Si2] that a Green twisted action of (S;N ) on A isa pair (
; � ), where 
 is an inverse semigroup action of S on A (that is, a semigroup homomorphisms 7! (
s; As� ; As) : S ! PAut (A) with Ae = A) and �n is a unitary multiplier of An for all n 2 N ,such that for all n; l 2 N we have(a) 
n = Ad �n;(b) 
s(�n) = �sns� for all s 2 S with n�n � s�s;(c) �n�l = �nl.The following is the semigroup version of [Ech, De�nition 1].



12 N�andor SiebenDe�nition 3.10. The Green twisted actions (A; S;N; �; � ) and (B; S;N; �; �) areMorita equivalentif there is a Morita equivalence (X;�) between the untwisted actions (A; S; �) and (B; S; �) suchthat �n � x = �n(x) � �n for all n 2 N and x 2 Xn. We say that (X;�) is a Morita equivalencebetween (A; S;N; �; � ) and (B; S;N; �; �), and we write (A; S;N; �; � ) �X;� (A; S;N; �; �).The proof of the following theorem is modeled on Echterho�'s proof [Ech] in the group case.Theorem 3.11. If (A; S;N; �; � ) and (B; S;N; �; �) are Morita equivalent Green twisted actionsthen the crossed products A��;� S and A ��;� S are also Morita equivalent.Proof. Let (X;�) be a Morita equivalence. Suppose (�; V;H) is a covariant representation of� which preserves the twist, that is, �(�n) = Vn for all n 2 N . The induced representation(�X ; V X ;HX) of � also preserves the twist, since if x; y 2 Xn and �; � 2 Hn then(�X(�n)(x 
 �) j y 
 �)HX = (�n � x
 � j y 
 �)HX = (�(hy; �n � xiB)� j �)H= (�(hy; �n(x)iB�n)� j �)H = (�(hy; �n(x)iB)Vn� j �)H= (V Xn (x 
 �) j y 
 �)HXand so �X(�n) = V Xn . A similar calculation shows that if (�X ; V X) preserves the twist then so does(�; V ). By [Rie, Proposition 3.3] the kernels of ��V and (��V )X��S are in Rie�el correspondence.By Proposition 3.9, �X � V X and (� � V )X��S have the same kernel. Hence the twisting ideals ofI� and I� are in Rie�el correspondence and so the quotients are Morita equivalent by [Rie, Corollary3.2]. 4. Connection with twisted partial actionsThe close connection between partial actions and inverse semigroup actions [Si1], [Ex3], [Si2]makes it possible to get quick results about the Morita equivalence of crossed products of twistedpartial actions. First recall the de�nition of a twisted partial action from [Ex2].De�nition 4.1. A (discrete) twisted partial action of a group G on a C�-algebra A is a pair (�; u),where for all s 2 G, �s : As�1 ! As is a partial automorphism of A, and for all r, s 2 G, ur;s is aunitary multiplier of ArArs, such that for all r, s, t 2 G we have(a) Ae = A, and �e is the identity automorphism of A;(b) �r(Ar�1As) = ArArs;(c) �r(�s(a)) = ur;s�rs(a)u�r;s for all a 2 As�1As�1r�1 ;(d) ue;t = ut;e = 1M(A);(e) �r(aus;t)ur;st = �r(a)ur;surs;t for all a 2 Ar�1AsAst;De�nition 4.2. The twisted partial actions (A;G; �; u) and (B;G; �;w) are Morita equivalent ifthere is an imprimitivity bimodule AXB and a map s 7! (�s; �s; �s) : G ! PAut (X), such that�s : Xs� ! Xs where Xs = As �X = X �Bs and for all s; t 2 G and x 2 X �Bt�1s�1Bt�1 we have�s�t(x) = us;t � �st(x) �w�s;t :We say that (X;�) is a Morita equivalence between (A;G; �; u) and (B;G; �; w), and we write(A;G; �; u)�X;� (B;G; �;w) :



morita equivalent semigroup actions 13Recall from [Ex3] that for a group G, the associated inverse semigroup S(G) has elementswritten in canonical form [g1][g�11 ] � � � [gm][g�1m ][s], where g1; : : : ; gn; s 2 G, and the order of the[gi][g�1i ] terms is irrelevant. Multiplication and inverses are de�ned by[g1][g�11 ] � � � [gm][g�1m ][s] � [h1][h�11 ] � � � [hm][h�1m ][t]= [g1][g�11 ] � � � [gm][g�1m ][s][s�1][sh1][(sh1)�1] � � � [shm][(shm)�1][st]and ([g1][g�11 ] � � � [gm][g�1m ][s])� = [s�1gm][(s�1gm)�1] � � � [s�1g1][(s�1g1)�1][s�1] :Thus [e] is an identity element for S(G) if e is the identity of G, so we can write [g1][g�11 ] � � � [gm][g�1m ]for [g1][g�11 ] � � � [gm][g�1m ][e], and these are the idempotents of S(G). Recall from [Si2, Section 4]that if (A;G; �; u) is a twisted partial action, then the corresponding Busby-Smith twisted action(A; S(G); �; v) is de�ned by Ap = Ag1 � � �AgmAs�p = �g1��1g1 � � ��gm��1gm�svp;q = 1M(Apq)us;t ;where p = [g1][g�11 ] � � � [gm][g�1m ][s]; q = [h1][h�11 ] � � � [hn][h�1n ][t] :Theorem 4.3. The twisted partial actions (A;G; �; u) and (B;G; �;w) are Morita equivalent ifand only if the corresponding Busby-Smith twisted actions (A; S(G); �; v) and (B; S(G); �; z) areMorita equivalent.Proof. Suppose (A; S(G); �; v) �X;� (A; S(G); �; z). If we identify the element s 2 G with [s] 2S(G), then � : G! PAut (X). For s; t 2 G and x 2 X �Bt�1s�1Bt�1 we have�s�t(x) = �[s]�[t](x) = v[s];[t] � �[s][t](x) � z�[s];[t]= v[s];[t] � �[st][t�1][t](x) � z�[s];[t]= v[s];[t]v�[st];[t�1 ][t] � �[st]�[t�1 ][t](x) � z[st];[t�1 ][t]z�[s];[t]= us;t � �[st](x) �w�s;t since, e.g., v[st];[t�1][t] = 1M(A[s][t])= us;t � �st(x) �w�s;t :Now suppose (A;G; �; u)�X;� (B;G; �;w). We can extend � to S(G) by de�ning�p = �g1��1g1 � � ��gm�g�1m �sfor p = [g1][g�11 ] � � � [gm][g�1m ][s] 2 S(G). We verify De�nition 2.4(d). Ifx; y 2 Xp� = X �Bp� = BsBg�1m Bg�1m g�1m�1 � � �Bg�1m ���g�11 ;then �p(Ahx; yi) = �g1��1g1 � � ��gm��1gm�s(Ahx; yi)= Ah�g1��1g1 � � ��gm��1gm�s(x); �g1��1g1 � � ��gm��1gm�s(y)i= Ah�p(x); �p(y)i :Similar calculations show that De�nition 2.4(a) is also satis�ed, which is enough by Lemma 2.5.



14 N�andor SiebenStarting with a twisted partial action (A;G; �; u), Exel [Ex3] builds a semidirect product C�-algebraic bundle B over G in the sense of Fell. He de�nes [Ex3, Introduction] the crossed productA ��;u G as the enveloping C�-algebra of the cross sectional algebra L1(B). We show that thecorresponding Busby-Smith twisted action has an isomorphic crossed product:Proposition 4.4. If the Busby-Smith twisted action (A; S(G); �; w) corresponds to the twistedpartial action (A;G; �; u) then the crossed products A��;u G and A��;w S(G) are isomorphic.Proof. We are going to show that the Banach �-algebras L�=I� and L1(B) are isomorphic, whichsu�ces since the crossed products are the enveloping C�-algebras. The formula�0(a�[g1 ]���[g�1n ][s]) := a�sde�nes a bounded �-homomorphism �0 : L� ! L1(B). Since�0(a�[g1 ]���[g�1n ][e] � a�[e]) = a�e � a�e = 0 ;�0 takes I� to 0 and hence determines a bounded �-homomorphism � : L�=I� ! L1(B). Going theother way, the formula  (a�s) := a�[s] + I�de�nes a bounded �-homomorphism  : L1(B) ! L� . It is clear that  � � is the identity map. Toshow that  � � is also the identity map, consider  � �(a�[g1 ]���[g�1n ][s] + I�) = a�[s] + I� . We canchoose elements b; c 2 A[g1 ]���[g�1n ][s] such that a = bc. Hencea�[g1]���[g�1n ][s] � a�[s] = (b�[g1 ]���[g�1n ] � b�[e]) � c�[s] 2 I� :Using Theorems 3.8 and 4.3 we now have:Corollary 4.5. Morita equivalent twisted partial actions have Morita equivalent crossed products.We now develop the basic theory of covariant representations for twisted partial actions.De�nition 4.6. A covariant representation of a twisted partial action (A;G; �; u) is a triple(�; U;H), where � is a nondegenerate representation of A on the Hilbert space H and for all s 2 G,Us is a partial isometry on H such that(a) Us has initial space �(As�1 )H and �nal space �(As)H;(b) UsUt = �(us;t)Ust for all s; t 2 G;(c) �(�s(a)) = Us�(a)U�s for all a 2 As�1 .Note that we have Us� = �(us�;s)U�s for all s 2 G. Every covariant representation gives arepresentation of the cross sectional algebra:De�nition 4.7. The integrated form ��U : L1(B)! B(H) of the covariant representation (�; U )is de�ned by �� � U�(x) = Xs2G�(x(s))Us ;where the series converges in norm.The proof of the following proposition is essentially the same as that of [Si2, Proposition 3.5].Proposition 4.8. � � U is a nondegenerate representation of L1(B).



morita equivalent semigroup actions 15Lemma 4.9. Let (A; S(G); �; v) be a Busby-Smith twisted action corresponding to the twistedpartial action (A;G; �; u). If (�; V ) is a covariant representation of (�; v) then (�; U ) is a covari-ant representation of (�; u), where Us := V[s] for all s 2 G. Conversely, if (�; U ) is a covariantrepresentation of (�;U ) then (�; V ) is a covariant representation of (�; v), whereV[g1 ][g�11 ]���[gn ][g�1n ][s] := Pg1 � � �PgnUsand Pt denotes �(1M(At)) for all t 2 G. Moreover this correspondence between covariant represen-tations of (�; u) and (�; v) is bijective.Proof. The only nontrivial condition to check for the �rst part is De�nition 4.6(b):UsUt = V[s]V[t] = �(v[s];[t])V[s][s�1 ][st] = �(1M(A[s][s�1][t])us;t)V[s][s�1 ][st]= �(us;t)�(1M(A[s][s�1 ][t]))V[s][s�1 ][st] = �(us;t)�(v[s][s�1 ];[st])V[s][s�1 ]V[st]= �(us;t)V[s][s�1 ]V[st] = �(us;t)Ust :To show the second part �rst notice that the Pt's commute since the 1M(At)'s are central projectionsin the double dual of A. Therefore V[g1 ]���[g�1n ][s] is well de�ned since Pg1 � � �Pgn does not depend onthe order of the idempotents [g1][g�11 ]; : : : ; [gn][g�1n ]. It is clear that V[g1 ]���[g�1n ][s] is a partial isometry.This partial isometry has the required �nal space since�(V[g1 ]���[g�1n ][s])H = Pg1 � � �PgnUsH = Pg1 � � �Pgn�(As)H= Pg1 � � �PgnPsH = �(Ag1 � � �AgnAs)H= �(A[g1 ]���[g�1n ][s])H :We can show that it also has the required initial space by taking conjugates. To check multiplicativity,let p = [g1] � � � [g�1m ][s] and q = [h1] � � � [h�1n ][t]. Then we haveVpVq = Pg1 � � �PgmUsPh1 � � �PhnUt :We �rst simplify a piece of this expression:UsPh1 = UsU�sUsUh1U�h1= Ps�(us;h1 )Ush1U�h1= Ps�(us;h1 )Psh1Ush1Uh�11 �(uh1 ;h�11 )�= PsPsh1�(us;h1 )�(ush1;h�11 )Us�(uh1 ;h�11 )�= PsPsh1�(us;h1 )UsU�s �(ush1;h�11 )Us�(uh1;h�11 )�= lim� PsPsh1�(us;h1)Us�(��1s (e�ush1;h�11 ))�(uh1 ;h�11 )� ;where e� is an approximate identity for AsAsh1= lim� PsPsh1�(us;h1)Us�(u�s�1;s�s�1(e�ush1;h�11 )us�1;s)�(uh1;h�11 )�= lim� PsPsh1�(us;h1)Us�(u�s�1;s�s�1(e�)us�1;sh1uh1 ;h�11 )�(uh1;h�11 )�= PsPsh1�(us;h1 )Us�(u�s�1;sus�1;sh1)= lim� PsPsh1UsU�s �(e�us;h1)Us�(u�s�1 ;sus�1;sh1 )= lim� PsPsh1Us�(��1s (e�us;h1))�(u�s�1 ;sus�1;sh1)= lim� PsPsh1Us�(u�s�1;s�s�1(e�us;h1)us�1;s)�(u�s�1;sus�1;sh1)= lim� PsPsh1Us�(u�s�1;s�s�1(e�)us�1;sue;h1u�s�1;sh1)�(us�1 ;sh1)= PsPsh1Us :



16 N�andor SiebenRepeating this calculation n� 1 times we haveVpVq = Pg1 � � �PgmPsPsh1Psh2 � � �PshnUsUt= Pg1 � � �PgmPsPsh1 � � �Pshm�(us;t)Ust= �(vp;q)V[g1 ]���[g�1m ][s][s�1 ][sh1 ]���[sh�1m ][st]= �(vp;q)Vpq :Finally we check the covariance condition. If p = [g1] � � � [g�1m ][s] and a 2 Ap� then�(�p(a)) = �(�s(a))= �(�g1��1g1 � � ��gn��1gn �s(a))= Ug1�(u�g�11 ;g1�g�11 � � ��gn��1gn �s(a)ug�11 ;g1)U�g1= Ug1�(u�g�11 ;g1)Ug�11 �(�g2 � � ��gn��1gn �s(a))U�g�11 �(ug�11 ;g1)U�g1= Ug1U�g1�(�g2 � � ��gn��1gn �s(a))U�g�11 Ug�11= � � �= Pg1 � � �PgnUs�(a)U�sP �gn � � �P �g1= Vp�(a)V �p :It is clear from the construction that the correspondence is bijective.Proposition 4.10. If (A;G; �; u) is a twisted partial action then (�; U ) 7! � � U is a bijectivecorrespondence between covariant representations of (�; u) and nondegenerate representations of thecrossed product A ��;u G.Proof. We know that there is an isomorphism � between A ��;v S(G) and A ��;u G where(A; S(G); �; v) is the corresponding semigroup action. We also know that there is a bijective cor-respondence 	 7! (�	; V 	) between nondegenerate representations of A ��;v S(G) and covariantrepresentations of (�; v) such that 	 = �	�V 	. We de�ne a bijective correspondence � 7! (��; U�)between nondegenerate representations of A��;uG and covariant representations of (�; u) satisfying� = �� � U� using the following diagram:Rep (A��;u G) $ Rep (A ��;v S(G)) � $ 	 = � � �l lCovRep (�; u) $ CovRep (�; v) (��; U�) $ (�	; V 	)If � is a nondegenerate representation of A��;uG then 	 = ��� is a nondegenerate representationof A ��;v S(G) and so 	 = �	 � V 	. Let (��; U�) be the covariant representation of (�; u)corresponding to (�	; V 	) as in Lemma 4.9. If a 2 As then�� � U�(a�s) = ��(a)U�s = �	(a)V 	[s] = 	(a�[s]) = �(a�s)and so �� � U� = �.



morita equivalent semigroup actions 175. Connection with crossed products by Hilbert bimodulesRecall from [AEE] that the crossed product A�� Z of the partial action (A;Z; �) is isomorphicto the crossed product A�X Z of A by the Hilbert bimodule AXA, where X is the vector space A1with module structure a � j := aj; j � a := �1(��11 (j)a)and inner products Ahj; ki := jk�; hj; kiA := ��11 (j�k)for j; k 2 A1 and a 2 A. In other words, we can get AXA by converting the standard A1 � A1imprimitivity bimodule A1 into an A1 �A�1 imprimitivity bimodule via the isomorphism �1, thenextending it canonically to a Hilbert A� A bimodule.De�nition 5.1. The Hilbert bimodules AXA and BYB are called Morita equivalent if there is anisomorphism (id; �; id) between the Hilbert bimodules X 
AM and M 
B Y for some imprimitivitybimodule AMB .Abadie, Eilers and Exel show that if AXA and BYB are Morita equivalent bimodules then thecrossed products A �X Z and B �Y Z are Morita equivalent. They note that Hilbert bimodulescorresponding to Morita equivalent actions of Z are Morita equivalent. We show that the Moritaequivalence of Hilbert bimodules corresponding to partial actions of Z is equivalent to the Moritaequivalence of the partial actions, in the sense of De�nition 4.2.Suppose we have two partial actions (A;�;Z) and (B; �;Z) with corresponding Hilbert bimod-ules AXA and BYB . We show that the two notions of Morita equivalence of the actions coincide.Proposition 5.2. The partial actions (A;�;Z) and (B; �;Z) are Morita equivalent if and only ifthe corresponding Hilbert bimodules AXA and BYB are Morita equivalent.Proof. If AMB is an imprimitivity bimodule thenspan hM 
B Y;M 
B Y iB = span hY; hM;M iB � Y iB= span ��11 (B�1 hM;M iBB1) = B�1 ;hence the imprimitivity bimodule corresponding to M 
B Y is of the form D(M 
B Y )B�1 for someclosed ideal D of A. Similarly, the imprimitivity bimodule corresponding to A(X 
A M )B is of theform A1(X 
AM )C for some closed ideal C of B. It is routine to check that the map m
 l 7! m � lfor m 2M and l 2 B1 extends to a map � :M
B Y !M �B1 such that (id; �; �1) is an isomorphismbetween D(M 
B Y )B�1 and the imprimitivity subbimodule D(M � B1)B1 of AMB . Similarly, themap j 
 m 7! ��1(j) � m for j 2 A1 and m 2 M extends to a map � : X 
A M ! A�1 � Msuch that (��1; �; id) is an isomorphism between A1(X 
AM )C and the imprimitivity subbimoduleA�1 (A�1 �M )C of AMB.Suppose now that the Hilbert bimodules X and Y are Morita equivalent. Then by Lemma 2.6and the above there exists an imprimitivity bimodule AMB and an isomorphism (id;  ; id) betweenthe imprimitivity bimodules A1(X 
AM )C and D(M 
B Y )B�1 . Then A1 = D and C = B�1 andso (�1; � � ���1; �1) is an isomorphism between A�1 (A�1 �M )B�1 and A1(M �B1)B1 . This impliesthat (A;X;Z) �X;� (B; Y;Z), where �n:= (� �  � ��1)n for n 2 Z n f0g. The situation can bevisualized by the following diagram:A(X 
AM )B A1(X 
AM )C (��1;�;id)�����! A�1 (A�1 �M )C??y ??y(id ; ;id ) ??y(�1;�1;�1)A(M 
A Y )B D(M 
B Y )B�1 (id;�;�1)�����! D(M �B1)B1



18 N�andor SiebenGoing the other way, if (A;�;Z) �M;� (B; �;Z) then �1 is an isomorphism between A�1(A�1 �M )B�1 and A1 (M �B1)B1 . So C = B�1, D = A1 and (id; ��1 ��1 ��; id) is an isomorphism betweenA1(X 
AM )C and D(M 
B Y )B�1 and so the Hilbert bimodules X and Y are Morita equivalent byLemma 2.6. References[AEE] B. Abadie, S. Eilers and R. Exel, Morita equivalence for crossed products by Hilbert C�-bimodules, preprint.[BGR] L. Brown, P. Green and M. Rie�el, Stable isomorphism and strong Morita equivalence ofC�-algebras, Pac. J. Math. 71(2) (1977), 349-363.[Com] F. Combes, Crossed products and Morita equivalence, Proc. London. Math. Soc. 49(1984), 289-306.[CMW] R. Curto, P. Muhly and D. Williams, Cross products of strongly Morita equivalent C�-algebras, Proc. Amer. Math. Soc. 90(4) (1984), 528-530.[Ech] S. Echterho�, Morita equivalent twisted actions and a new version of the Packer-Raeburnstabilization trick, J. London Math. Soc. (2) 50 (1994), 170-186[ER] S. Echterho� and I. Raeburn,Multipliers of imprimitivity bimodules and Morita equivalenceof crossed products, Math. Scand. 76 (1995), 289-309.[Ex1] R. Exel, Circle actions on C�-algebras, partial automorphisms and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal. 122 (1994), 361-401.[Ex2] R. Exel, Twisted partial actions a classi�cation of stable C�-algebraic bundles, preprint.[Ex3] R. Exel, Partial actions of groups and actions of inverse semigroups, preprint.[JT] K. Jensen and K. Thomsen, Elements of KK-theory, Birkh�auser, Boston, 1991.[Kal] S. Kaliszewski,Morita equivalence methods for twisted C�-dynamical systems, Ph.D. thesis,Dartmouth College, 1994.[Lan] E. Lance, Hilbert C�-modules, a toolkit for operator algebraists, Cambridge UniversityPress, Cambridge, 1995.[Pat] A. Paterson, r-Discrete C�-algebras as covariant C�-algebras, Groupoid Fest lecture notes,Reno, 1996.[Rie] M. Rie�el, Unitary representations of group extensions: an algebraic approach to the theoryof Mackey and Blattner, Advances in Mathematics Supplementary Studies, 4 (1979), 43-81.[Si1] N. Sieben, C�-crossed products by partial actions and actions of inverse semigroups, J.Australian Math. Soc. (to appear).[Si2] N. Sieben, C�-crossed products by twisted inverse semigroup actions, preprint.


