
SYMMETRY AND AUTOMATED BRANCH FOLLOWING FORA SEMILINEAR ELLIPTIC PDE ON A FRACTAL REGIONJOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTAbstra
t. We apply the Gradient-Newton-Galerkin-Algorithm (GNGA) of Neuberger & Swiftto �nd solutions to a semilinear ellipti
 Diri
hlet problem on the region whose boundary is theKo
h snow
ake. In a re
ent paper, we des
ribed an a

urate and eÆ
ient method for generating abasis of eigenfun
tions of the Lapla
ian on this region. In that work, we used the symmetry of thesnow
ake region to analyze and post-pro
ess the basis, rendering it suitable for input to the GNGA.The GNGA uses Newton's method on the eigenfun
tion expansion 
oeÆ
ients to �nd solutions tothe semilinear problem. This arti
le introdu
es the bifur
ation digraph, an extension of the latti
eof isotropy subgroups. For our example, the bifur
ation digraph shows the 23 possible symmetrytypes of solutions to the PDE and the 59 generi
 symmetry-breaking bifur
ations among thesesymmetry types. Our numeri
al 
ode uses 
ontinuation methods, and follows bran
hes 
reatedat symmetry-breaking bifur
ations, so the human user does not need to supply initial guesses forNewton's method. Starting from the known trivial solution, the 
ode automati
ally �nds at least onesolution with ea
h of the symmetry types that we predi
t 
an exist. Su
h 
omputationally intensiveinvestigations ne
essitated the writing of automated bran
h following 
ode, whereby symmetryinformation was used to redu
e the number of 
omputations per GNGA exe
ution and to makeintelligent bran
h following de
isions at bifur
ation points.1. Introdu
tion.We seek numeri
al solutions to the semilinear ellipti
 boundary value problem�u+ f�(u) = 0 in 
u = 0 on �
;(1)where � is the Lapla
ian operator, 
 � R2 is the region whose boundary �
 is the Ko
h snow
ake,u : 
! R is the unknown fun
tion, and f� : R ! R is a one-parameter family of odd fun
tions. For
onvenien
e, we refer to 
 as the Ko
h snow
ake region. This arti
le is one of the �rst to 
onsidera nonlinear PDE on a region with fra
tal boundary. In this paper, we 
hoose the nonlinearity tobe f�(u) = �u+ u3;(2)and treat � 2 R as the bifur
ation parameter. When the parameter is �xed, we will sometimes usef in pla
e of f�. Using this 
onvention, note that � = f 0(0).This paper exploits the hexagonal symmetry of the Ko
h snow
ake region, and the fa
t that fis odd. Our nonlinear 
ode would work with any region with hexagonal symmetry and any odd`superlinear' fun
tion f (see [4℄), and with minor modi�
ation for other 
lasses of nonlinearitiesas well. We 
hose to work with odd f primarily be
ause of the ri
h symmetry stru
ture. Theexpli
it shape of 
 represents a 
onsiderable te
hnologi
al 
hallenge for the 
omputation of theeigenfun
tions [16, 27℄, whi
h are required as input to the nonlinear 
ode.It is well known that the eigenvalues of the Lapla
ian under this boundary 
ondition satisfy0 < �1 < �2 � �3 � � � � ! 1;(3)2000 Mathemati
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2 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTand that the 
orresponding eigenfun
tions f jgj2N 
an be 
hosen to be an orthogonal basis forthe Sobolev spa
e H = H10 (
) = W 1;20 (
), and an orthonormal basis for the larger Hilbert spa
eL2 = L2(
). The inner produ
ts arehu; viH = Z
ru � rv dx and hu; vi2 = Z
u v dx;respe
tively (see [1, 9, 15, 17℄). Theorem 8.37 and subsequent remarks in [9℄ imply that theeigenfun
tions are in C1(
). In [17℄, properties of the gradients of eigenfun
tions near boundarypoints are explored in light of the la
k of regularity of �
.Using the Gradient-Newton-Galerkin-Algorithm (GNGA, see [26℄) we seek approximate solutionsu =PMj=1 aj j to (1) by applying Newton's method to the eigenfun
tion expansion 
oeÆ
ients ofthe gradient rJ(u) of a nonlinear fun
tional J whose 
riti
al points are the desired solutions. Thede�nition of J , the required variational equations, a des
ription of the GNGA, and a brief historyof the problem are the subje
t of Se
tion 2.The GNGA requires as input a basis spanning a suÆ
iently large but �nite dimensional subspa
eBM = spanf 1; : : : ;  Mg, 
orresponding to the �rst M eigenvalues f�jgMj=1. As des
ribed in [27℄,a grid GN of N 
arefully pla
ed points is used to approximate the eigenfun
tions. These are thesame grid points used for the numeri
al integrations required by Newton's method. Se
tion 3 brie
ydes
ribes the pro
ess we use for generating the eigenfun
tions.Se
tion 4 
on
erns the e�e
ts of symmetry on automated bran
h following. The symmetry the-ory for linear operators found in [27℄ is summarized and then the extensions required for nonlinearoperators are des
ribed. Symmetry-breaking bifur
ations are analyzed in a way that allows anautomated system to follow the bran
hes 
reated at the bifur
ations. As we develop the theory, wepresent spe
i�
 examples applying the general theory to equation (1) on the snow
ake region. Inparti
ular, we �nd that there are 23 di�erent symmetry types of solutions to (1), and 59 generi
symmetry-breaking bifur
ations. The symmetry types and bifur
ations among them are summa-rized in a bifur
ation digraph, whi
h generalizes the well-known latti
e of isotropy subgroups (see[10℄). As far as we know, the bifur
ation digraph is a new way to organize the information aboutthe symmetry-breaking bifur
ations.Se
tion 5 des
ribes how understanding the symmetry allows remarkable in
reases in the eÆ
ien
yof the GNGA. Se
tion 6 des
ribes the automated bran
h following. We use repeated exe
utions ofthe GNGA or a slightly modi�ed algorithm (parameter-modi�ed GNGA) to follow solution bran
hesof (1, 2). The GNGA uses Newton's method, whi
h is known to work well if it has a good initialapproximation. The main short
oming of Newton's method is that is works poorly without a goodinitial approximation. We avoid this problem by starting with the trivial solution (u = 0). Thesymmetry-breaking bifur
ations of the trivial solution are found by the algorithm and the primarybran
hes are started. The program follows the bran
hes by 
ontinuation methods, and then followsthe new bran
hes 
reated at symmetry-breaking bifur
ations. To follow an existing bran
h, we vary� slightly between exe
utions. To start new solution bran
hes 
reated at bifur
ation points, wetreat � as a variable and �x one of the null eigenfun
tions of the Hessian evaluated at the bifur
ationpoint. The symmetry analysis tells whi
h null eigenfun
tion to use. In this way solutions with all23 symmetry types are found automati
ally, starting from u = 0, without having to guess anyapproximations for Newton's method.In our experiments, many bifur
ation diagrams were generated by applying the te
hniques men-tioned above. A sele
tion of these diagrams are provided in Se
tion 7, along with 
ontour plotsof solutions to (1) 
orresponding to ea
h of the 23 symmetry types predi
ted to exist. We in
ludeeviden
e of the 
onvergen
e of our algorithm as the number of modesM and grid points N in
rease.Many extensions to our work are possible, in
luding enfor
ing di�erent boundary 
onditions onthe same region, solving similar semilinear equations on other fra
tal regions, and applying themethodology to partial di�eren
e equations (PdE) on graphs [25℄. Se
tion 8 dis
usses some ofthese possible extensions. In parti
ular, we are in the pro
ess of re-writing the suite of programs.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 3We plan to be able to solve larger problems using a parallel environment. We will be able to solveproblems with larger symmetry groups by automating the extensive group theoreti
 
al
ulations.This 
on
luding se
tion also has a dis
ussion of the 
onvergen
e of the GNGA.2. GNGA.We now present the variational ma
hinery for studying (1) and follow with a brief des
ription ofthe general GNGA. Se
tion 6 
ontains more details of the implementation of the algorithm for ourspe
i�
 problem. Let F�(u) = R u0 f�(s) ds for all u 2 R de�ne the primitive of f�. We then de�nethe a
tion fun
tional J : R �H ! R by(4) J(�; u) = Z
 �12 jruj2 � F�(u)	 dx:We will sometimes use J : H ! R to denote J(�; �). The 
lass of nonlinearities f found in[4, 5, 25, 28℄ imply that J is well de�ned and of 
lass C2 on H. The 
hoi
e (2) we make inthis paper belongs to that 
lass. Criti
al points of J are by de�nition weak solutions of (1) (seefor example [4, 28, 9℄), and 
learly 
lassi
al solutions are 
riti
al points. The usual \bootstrap"argument of repeatedly applying Theorem 8.10 of [9℄ 
an be used in our 
ase. Spe
i�
ally, Hk0 isembedded in Lq for all q � 2 when the spa
e diminsion n is 2, regardless of the regularity of �
 (dueto the zero Diri
hlet boundary 
ondition, see [1℄). Hen
e u 2 Hk implies f(u) 2 Hk as well. As aresult, if u is a 
riti
al point then u 2 C1(
) \ C(�
), hen
e a 
lassi
al solution. If one 
onsideredboundary 
onditions, spa
e dimensions, and nonlinear terms other than the 
hoi
es made in thispaper, it 
ould happen that 
riti
al points would be weak not 
lassi
ial solutions. Regardless, ourapproximations lie inBM � C1. Here, the existen
e proofs for positive, negative, and sign-
hangingexa
tly on
e solutions from [4, 28℄ immediately give at least 3 nontrivial (
lassi
al) solutions forour spe
i�
 superlinear boundary value problem; appealing to symmetry implies the existen
e ofeven more solutions (see for example [25℄).The 
hoi
e of H for the domain is 
ru
ial to the analysis of the PDE (see [4, 24℄, and referen
estherein), as well as for understanding the theoreti
al basis of e�e
tive steepest des
ent algorithms(see [7, 22, 23℄, for example). We will work in the 
oeÆ
ient spa
e RM �= BM . The 
oeÆ
ient ve
torof u 2 BM is the ve
tor a 2 RM satisfying u = PMj=1 aj j . Using the 
orresponding eigenvalues(3) and integrating by parts, the quantities of interest are(5) gj = J 0(u)( j) = Z
fru � r j � f(u) jg = aj�j � Z
f(u) j ; and(6) hjk = J 00(u)( j ;  k) = Z
fr j � r k � f 0(u) j  kg = �jÆjk � Z
f 0(u) j  k;where Æjk is the Krone
ker delta fun
tion. Note that there is no need for numeri
al di�erentiationwhen forming gradient and Hessian 
oeÆ
ient ve
tors and matri
es in implementing Algorithm 2.1;this information is en
oded in the eigenfun
tions.The ve
tor g 2 RM and theM�M matrix h represent suitable proje
tions of the L2 gradient andHessian of J , restri
ted to the subspa
e BM , where all su
h quantities are de�ned. For example,for u =PMj=1 aj j , v =PMj=1 bj j , and w =PMj=1 
j j , we have:PBMr2J(u) = MXj=1 gj j; J 0(u)(v) = g � b; and J 00(u)(v; w) = hb � 
 = b � h
:We 
an identify g with the approximation PBMr2J(u) of r2J(u) = �u + f(u), whi
h is de�nedfor u 2 BM . The solution � to the M -dimensional linear system h� = g is then identi�ed with the(suitably proje
ted) sear
h dire
tion (D22J(u))�1r2J(u), whi
h is not only de�ned for u 2 BM , butis there equal to (D2HJ(u))�1rHJ(u). We use the least squares solution of h� = g. In pra
ti
e,the algorithm works even near bifur
ation points where the Hessian is not invertible.



4 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFTThe heart of our 
ode is Newton's method in the spa
e of eigenfun
tion 
oeÆ
ients:Algorithm 2.1. (GNGA)(1) Choose initial 
oeffi
ients a = fajgMj=1, and set u =P aj j.(2) Loop(a) Cal
ulate the gradient ve
tor g = fJ 0(u)( j)gMj=1 from equation (5).(b) Cal
ulate the Hessian matrix h = fJ 00(u)( j ;  k)gMj; k=1 from equation (6).(
) Exit loop if jjgjj is suffi
iently small.(d) Solve h� = g for the Newton sear
h dire
tion � 2 RM .(e) Repla
e a a� � and update u =P aj j.(3) Cal
ulate sig(h) and J for the approximate solution.If Newton's method 
onverges then we expe
t that u approximates a solution to the PDE (1),provided M is suÆ
iently large and the eigenfun
tions and numeri
al integrations are suÆ
ientlya

urate. See Se
tion 8.Our estimate for the Morse index (MI) of the 
riti
al point of J is the signature of h, denotedsig(h), whi
h is de�ned as the number of negative eigenvalues of h. This measures the number oflinearly independent dire
tions away from u in whi
h J de
reases quadrati
ally.The basi
 Algorithm 2.1 is modi�ed to take advantage of the symmetry of our problem. The Mintegrations required in step (a) and the M(M +1)=2 integrations in step (b) are redu
ed to fewerintegrations if the initial guess has nontrivial symmetry.We often use a \parameter-modi�ed" version of the GNGA (pmGNGA). In this modi�
ation, �is treated as an unknown variable and one of the M 
oeÆ
ients ak is �xed. Along a given bran
h,symmetry generally for
es many 
oeÆ
ients to be zero. When a bifur
ation point is lo
ated byobserving a 
hange in MI, we 
an predi
t the symmetry of the bifur
ating bran
hes using thesymmetry of the null eigenfun
tions of the Hessian. By for
ing a small nonzero 
omponent in thedire
tion of a null eigenfun
tion (orthogonal to the old bran
h's smaller invariant subspa
e), we 
anassure that the pmGNGA will not 
onverge to a solution lying on the old bran
h. Another bene�tof the pmGNGA is that it 
an handle a 
urve bifur
ating to the right as well as one bifur
atingto the left. In our system, the bran
hes that bifur
ate to the right have saddle node bifur
ationswhere they turn around and go to the left. The pmGNGA 
an follow su
h bran
hes while thenormal GNGA 
annot.The implementation of pmGNGA is not diÆ
ult. The M equations are stillgi = J 0(u)( i) = 0;but the M unknowns are ~a = (a1; : : : ; ak�1; �; ak+1; : : : ; aM );and the value of one 
oeÆ
ient, ak, is �xed. Consequently, we repla
e the Hessian matrix h with anew matrix ~h where the k-th 
olumn is set to �gi=�� = �ai:~hij = � hij if j 6= k�ai if j = k :The sear
h dire
tion ~� is the solution to the system ~h~� = g. The pmGNGA step is~a ~a� ~�;and then u and � are updated. After Newton's method 
onverges, the k-th 
olumn of the originalhij is 
al
ulated and the MI of the solution, sig(h), is 
omputed.We 
on
lude this se
tion with a very brief history of the analyti
al and numeri
al aspe
ts ofthe resear
h into (1) given our type of nonlinearity f . Our introdu
tion to this general subje
twas [4℄, where a sign-
hanging existen
e result was proven. This theorem is extended in [5℄; weindi
ate brie
y in Se
tion 7 where this so-
alled CCN solution 
an be found on our bifur
ationdiagrams. The arti
le [7℄ was our �rst su

ess in using symmetry to �nd higher MI solutions. The
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Figure 1. The Ko
h snow
ake region 
 with the grids G13 and G133 at levels` = 2 and 3, respe
tively. A generi
 grid point (whi
h is not on any line of re
e
tionsymmetry) is indi
ated in the larger grid.GNGA was developed in [26℄, wherein a mu
h more detailed des
ription of the variational stru
tureand numeri
al implementation 
an be found. The �rst implementation of the GNGA for regionswhere the eigenfun
tions are not known in 
losed form is in [12℄, where the region is a Bunimovi
hstadium. The arti
le [24℄ provides a histori
al overview of the authors' experimental results usingvariants of the Mountain Pass Algorithm (MPA, MMPA, HLA) and the GNGA, as well as re
entanalyti
al results and a list of open problems; the referen
es found therein are extensive.3. The Basis of Eigenfun
tions.In [27℄, we des
ribe theoreti
al and 
omputational results that lead to the generation of a basisof eigenfun
tions solving(7) �u+ �u = 0 in 
; u = 0 on �
:That paper details the grid te
hnique and symmetry analysis that a

ompanied the e�ort; we brie
ysummarize those results in this se
tion.The Ko
h snow
ake is a well-known fra
tal, with Hausdor� dimension log3 4. Following Lapidus,Neuberger, Renka, and GriÆth [16℄, we take our snow
ake to be ins
ribed in a 
ir
le of radius p33
entered about the origin. We use a triangular grid GN of N points to approximate the snow
akeregion. Then, we identify u : GN ! R with u 2 RN , that is,(8) u(xi) = uiat grid points xi 2 GN . Our paper [27℄ di�ers from [16℄ in that we use a di�erent pla
ement of thegrid points and a di�erent method of enfor
ing the boundary 
ondition, resulting in more a

urateeigenvalue estimates with fewer points. Figure 1 depi
ts the levels 2 and 3 grids in the family of gridsused in [27℄ to 
ompute eigenfun
tions; we used the �rst M eigenfun
tions 
omputed at levels 4, 5,and 6 in our nonlinear experiments. The number of grid points at level ` is N = (9`�4`)=5, and thespa
ing between grid points is h = 2=3`. We 
omputed the eigenvalues and eigenfun
tions for (7)using ARPACK and this approximation to the Lapla
ian with zero-Diri
hlet boundary 
onditions:��u(x) � 23h2 �(12 � number of neighbors)u(x)�Xfneighboring values of ug� :(9)The ARPACK is based upon an algorithmi
 variant of the Arnoldi pro
ess 
alled the Impli
itlyRestarted Arnoldi Method (see [19℄) and is ideally suited for �nding the eigen-pairs of the largesparse matri
es asso
iated with the dis
retization of the Lapla
ian.



6 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFT4. Symmetry: The Latti
e of Isotropy Subgroups and The Bifur
ation Digraph.This se
tion des
ribes equivariant bifur
ation theory as it applies to the bran
hing of solutionsto equation (1), see [6, 10, 11, 18℄. We are able to des
ribe the expe
ted symmetry types ofsolutions to (1), as traditionally arranged in a latti
e of isotropy subgroups. We introdu
e thebifur
ation digraph, a re�nement of the latti
e, whi
h shows every possible generi
 bifur
ation fromone symmetry type to another as a dire
ted edge whi
h is labeled with information about thebifur
ation. The bifur
ation digraph is of interest in its own right and summarizes the essentialinformation required by our automated bran
h following 
ode. In this proje
t, GAP (Groups,Algorithms, and Programming, see [8℄) was used solely to verify the symmetry analysis we did byhand. In our 
ontinuing proje
ts GAP is a useful tool sin
e it 
an perform the tedious 
al
ulationsand write the information in a format that 
an be read by the bran
h following 
ode. Matthews[21℄ has used GAP to do similar 
al
ulations. We apply this methodology to the snow
ake domainbeing 
onsidered in this paper. The analysis shows that solutions fall into 23 symmetry types, andthat there are 59 types of generi
 symmetry breaking bifur
ations.Group A
tions and the Latti
e of Isotropy Subgroups. Let � be a �nite group and V be areal ve
tor spa
e. A representation of � is a homomorphism � : � ! GL(V ). Where 
onvenient,we identify GL(V ) with the set of invertible matri
es with real 
oeÆ
ients. Every representation� 
orresponds to a unique group a
tion of � on V by the rule 
 � v := �(
)(v) for all 
 2 � andv 2 V . We will usually use the a
tion rather than the representation. The group orbit of v is� � v = f
 � v j 
 2 �g.Example 4.1. Let D 6 := h�; � j �6 = �2 = 1; � � = ��5ibe the dihedral group with 12 elements. It is 
onvenient to de�ne � = �3�. It follows that�� = �� = �3. The group D 6 is the symmetry of a regular hexagon, and of the Ko
h Snow
akeregion 
. The standard D 6 a
tion on the plane is given by� � (x; y) = �12x+ p32 y;�p32 x+ 12y�� � (x; y) = (�x; y)� � (x; y) = (x;�y):(10)In this a
tion, � is a rotation by 60Æ, � is a re
e
tion a
ross the y-axis, and � is a re
e
tion a
rossthe x-axis. These group a
tions are depi
ted in Figure 13, near the end of the paper.We will denote subgroups of D 6 by listing the generators. While any given subgroup of D 6
an be de�ned using only � and �, we �nd it geometri
ally des
riptive to use � in 
ertain 
ases.For example, we prefer h�2; �i to the equivalent h�2; ��i. In order to make relationships amongsubgroups intuitive, we often in
lude � when its membership is implied by the other generators(see for example Figure 2).The standard D 6 group a
tion (10) is not the only a
tion we 
onsider. For a fun
tion u 2 L2(
)and group element 
 2 D 6 , we de�ne (
 � u)(x) = u(
�1 � x). In this paper, a ve
tor u de�ned byui = u(xi), for a given grid GN = fxigNi=1, is a dis
rete approximation of a fun
tion on 
. The D 6group a
tion on u 2 RN is a permutation of the 
omponents: (
 �u)i = u(
�1 �xi). Given a fun
tionu 2 L2(
) or RN , the group orbit D 6 � u 
onsists of fun
tions obtained from u by a re
e
tion orrotation.Example 4.2. The group D 6 � Z2, where Z2 = f1;�1g, a
ts on L2(
) in a natural way. For all(
; z) 2 D 6 � Z2, de�ne (
; z) � u = z(
 � u):We will denote (
; 1) 2 D 6 � Z2 by 
 and (
;�1) 2 D 6 � Z2 by �
. With this natural notation(�
) � u = �(
 � u), whi
h we 
all simply �
 � u.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 7Let us re
all some fa
ts about group a
tions, following [6, 10, 11℄. The isotropy subgroup orstabilizer of v 2 V in � is Stab(v;�) := f
 2 � j 
 � v = vg:The isotropy subgroup measures the symmetry of v, and is sometimes 
alled the little group of v, or�v. If the group � is understood, we may simply write Stab(v) in pla
e of Stab(v;�). The stabilizerof a subset W � V in � is Stab(W;�) := f
 2 � j 
 �W = Wg. This must be distinguished fromthe point stabilizer of a subsetpStab(W;�) := f
 2 � j 
 � v = v for all v 2Wg =\fStab(v;�) j v 2Wg:Another 
ommonly used notation is �W for the stabilizer and �(W ) for the point stabilizer. Notethat pStab(W;�) is always normal in Stab(W;�), and the e�e
tive symmetry group a
ting on W isStab(W;�)=pStab(W;�), whi
h a
ts faithfully on W .If � is a subgroup of � then the �xed point subspa
e of � in V isFix(�; V ) := fv 2 V j 
 � v = v for all 
 2 �g:Another notation for the �xed point subspa
e is V�. We write Fix(�) when V is understood.An isotropy subgroup of the � a
tion on V is the stabilizer of some point v 2 V . For some groupa
tions, not every subgroup of � is an isotropy subgroup.Example 4.3. Consider the D 6 a
tion on the plane R2 des
ribed in equation (10. It is well-knownthat h�i is not an isotropy subgroup of this a
tion.Now 
onsider the D 6 a
tion on the fun
tion spa
e L2(
). We give a standard argument thatevery subgroup of D 6 is an isotropy subgroup. Start with a fun
tion u� that is zero everywhereex
ept for a small region, and suppose that the region is distin
t from ea
h of its nontrivial imagesunder the D 6 a
tion. Then for any subgroup � � D 6 , the average of the fun
tion u� over �, de�nedas(11) P�(u�) = 1j�jX
2� 
 � u�has isotropy subgroup �. Therefore every subgroup of the D 6 a
tion on L2(
) is an isotropysubgroup. The average over the group is an example of a Haar operator, and P� : V ! Fix(�; V )is an orthogonal proje
tion operator [36℄.Similarly, every subgroup of D 6 is an isotropy subgroup of the D 6 a
tion on RN , the spa
e offun
tions on the grid GN , provided ` � 3. This follows from averaging the fun
tion that is 1 at ageneri
 latti
e point, and 0 elsewhere. Re
all that a generi
 point is one whose isotropy subgroupis trivial. Figure 1 shows that the level two grid G13 does not have a generi
 point, while the levelthree grid G133 does. Thus, the spa
e of fun
tions on G133 has the same isotropy subgroups asL2(
), but a mu
h smaller spa
e has this same property. Start with any generi
 point x1 2 
.Then D 6 a
ts on the spa
e of fun
tions on the 12 points D 6 � x1. This D 6 a
tion on R12 has thesame stru
ture of isotropy subgroups as the D 6 a
tion on L2(
), and is the D 6 a
tion used inour GAP 
al
ulations. The 
orresponding 12-dimensional representation is the well-known regularrepresentation of D 6 (see [29, 31, 34℄).The symmetry of fun
tions is des
ribed by two related 
on
epts. A fun
tion q : V ! R is�-invariant if q(
 � v) = q(v) for all 
 2 � and all v 2 V . Similarly, an operator T : V ! V is�-equivariant if T (
 � v) = 
 � T (v) for all 
 2 � and all v 2 V .Example 4.4. The energy fun
tional J de�ned in equation (4) is D 6 �Z2-invariant. The nonlinearPDE (1) 
an be written as (�+ f)(u) = 0, where �+ f is a D 6 �Z2-equivariant operator. (Thereare subtleties 
on
erning the domain and range of �. See [6, 7℄ for a 
areful treatment of thefun
tion spa
es.) In parti
ular, � + f is D 6 -equivariant be
ause the snow
ake region 
 has D 6symmetry, and (�+ f)(�u) = �(�+ f)(u), sin
e f is odd. As a 
onsequen
e, if u is a solution to(1), then so is every element in its group orbit (D 6 � Z2) � u.
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es are important be
ause of the following simpleyet powerful results. See [6, 10, 11℄.Proposition 4.5. Suppose � a
ts linearly on V , T : V ! V is �-equivariant and � is an isotropysubgroup of �.(a) If v 2 Fix(�) then T (v) 2 Fix(�). Thus, T jFix(�) : Fix(�)! Fix(�) is de�ned.(b) Stab(Fix(�)) = N�(�), the normalizer of � in �, and pStab(Fix(�)) = �.(
) T jFix(�) is N�(�)-equivariant.(d) T jFix(�) is N�(�)=�-equivariant, and N�(�)=� a
ts faithfully on Fix(�).If � is a subgroup of �, the normalizer of � in � is de�ned to be N�(�) := f
 2 � j 
� = �
g,whi
h is the largest subgroup of � for whi
h � is a normal subgroup. The presen
e of the normalizerin Proposition 4.5(b) is interesting, sin
e the normalizer is a property of the abstra
t groups, andis independent of the group a
tion.Example 4.6. As a 
onsequen
e of Proposition 4.5, we 
an solve the PDE (1), written as (�+f)(u) =0, by restri
ting u to fun
tions in Fix(�; L2(
)). This leads to a simpler problem sin
e the fun
tionspa
e Fix(�; L2(
)) is simpler than L2(
). An example of this is in Costa, Ding, and Neuberger[7℄. The te
hniques of that paper, applied to our problem, would �nd sign-
hanging solutions withMorse index 2 within the spa
e Fix(D 6 ; L2(
)). This spa
e 
onsists of all fun
tions whi
h areun
hanged under all of the rotations and re
e
tions of the snow
ake region.Proposition (4.5) also applies to the GNGA, sin
e the Newton's method iteration mapping isD 6 �Z2-equivariant. If the initial guess is in a parti
ular �xed point subspa
e, all the iterates willbe in that �xed point subspa
e. This fa
t 
an be used to speed numeri
al 
al
ulations, as des
ribedin Se
tion 5.Two subgroups �1;�2 of � are 
onjugate (�1 � �2) if �1 = 
�2
�1 for some 
 2 �. Thesymmetry type of v 2 V for the � a
tion is the 
onjuga
y 
lass of Stab(v;�). Note that Stab(
 �v) =
 Stab(v)
�1. Thus, every element of a group orbit � � v has the same symmetry type.Let S = fSig denote the set of all symmetry types of a � a
tion on V . The set S has a naturalpartial order, with Si � Sj if there exits �i 2 Si and �j 2 Sj su
h that �i � �j. The partiallyordered set (S;�) is 
alled the latti
e of isotropy subgroups of the � a
tion on V [10℄. The diagramof the latti
e of isotropy subgroups is a dire
ted graph with verti
es Si and arrows Si  Sj if, andonly if, Si � Sj and there is no symmetry type between Si and Sj .Example 4.7. The symmetry type of a solution u to our PDE (1) for the D 6 � Z2 a
tion is the
onjuga
y 
lass of Stab(u; D 6 � Z2); we refer to this as the symmetry type of u, without referen
eto D 6 �Z2. The dis
ussion of D 6 a
ting on L2(
) in Example 4.3 
an easily be extended to D 6 �Z2a
ting on L2(
). Note that if �1 2 � � D 6 �Z2, then the average of any fun
tion over � is u = 0.Therefore the only isotropy subgroup of D 6 �Z2 whi
h 
ontains �1 is D 6 �Z2 itself. On the otherhand, the argument in Example 4.3 shows that any subgroup of D 6 � Z2 whi
h does not 
ontain�1 is an isotropy subgroup. Therefore, � � D 6 � Z2 is an isotropy subgroup of this group a
tionif and only if � = D 6 � Z2 or �1 =2 �.This result allowed us to 
ompute the isotropy subgroups by hand. We veri�ed our 
al
ulationsusing GAP. There are exa
tly 23 
onjuga
y 
lasses of isotropy subgroups for the D 6 � Z2 a
tionon L2(
), shown in 
ondensed form in Figure 2. Thus, a solution to the PDE (1) has one of 23di�erent symmetry types.Irredu
ible Representations and the Isotypi
 De
omposition. In order to understand thesymmetry-breaking bifur
ations we need to �rst understand irredu
ible representations and theisotypi
 de
omposition of a group a
tion. The information about the irredu
ible representations issummarized in 
hara
ter tables [29, 31, 32, 34℄. For our purposes, irredu
ible representations overthe �eld R are required, see [6, 10, 11℄. The irredu
ible representations of � are homomorphismsfrom � to the spa
e of dj � dj real matri
es: 
 7! �(j)(
), su
h that no proper subspa
e of Rdj is
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���1 = h�; �; �i = D 6�2 = h�;��;��i�3 = h��; �;��i�4 = h��;��; �i22 �� 2 %%
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�9 = h�2; �i�10 = h�2; �i�11 = h�2;��i�12 = h�2;��i
4

%%
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yysssssssssssssssssssssssssss

�13 = h�i�14 = h��i
2

��

yysssssssssssssssssssssssssss

�15 = h�i�16 = h�i�17 = h��i�18 = h��i 4 ((PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

�19 = h�3i�20 = h��3i
2

��

�21 = h�2i
wwoooooooooooooooooooooooooooooo

�22 = h1iFigure 2. The 
ondensed diagram of the isotropy latti
e (see [10℄) for the D 6 �Z2a
tion on L2(
). The verti
es of this diagram are the symmetry types (equivalen
e
lasses of isotropy subgroups). We follow the 
onvention [6, 10, 11℄ that one element�i of ea
h symmetry type Si = [�i℄ is listed. The representatives �i have the propertythat �i � �j i� Si � Sj. Contour plots of solutions to PDE (1) with ea
h of the23 symmetry types are given in Figures 13 and 14. The diagram of the isotropylatti
e is 
ondensed as in [32℄. The small numbers on the edges tell the number of
onne
tions emanating from ea
h symmetry type in a box. A missing small numbermeans 1. For example, the two arrows representing [�21℄ � [�13℄ and [�21℄ � [�14℄in the full diagram are 
ollapsed to a single arrow in the 
ondensed diagram. For�0 through �4, the � generator is redundant sin
e � = �3�, but its presen
e makesthe subgroups manifest. For example, �2 = h�;��;��i = h�;��i, but the threegenerators make it 
lear that h��;��i � h�;��;��i.
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) for all 
 2 �. The dimension of the irredu
ible representation �(j) is dj. We
all W � V a �-invariant subspa
e of V if � �W �W . An irredu
ible subspa
e of V is an invariantsubspa
e with no proper invariant subspa
es. Every irredu
ible subspa
e of the � a
tion on V
orresponds to a unique (up to similarity) irredu
ible representation of �. The dimension of theirredu
ible subspa
e is the same as the dimension of the 
orresponding irredu
ible representation.For ea
h irredu
ible representation �(j) of �, the isotypi
 
omponent of V for the � a
tion,denoted by V (j)� , is de�ned to be the dire
t sum of all of the irredu
ible subspa
es 
orrespondingto the �xed �(j) [6, 10, 11, 27℄. The isotypi
 de
omposition of V is then(12) V =Mj V (j)� :Some of the isotypi
 
omponents might be the single point at the origin. These 
an be left outof the isotypi
 de
omposition. A des
ription of the isotypi
 
omponents in terms of proje
tionoperators is given in [27℄.For any group �, we denote the trivial representation by �(1). That is �(1)(
) = 1 for all 
 2 �.Thus, if � is an isotropy subgroup of a �0 a
tion on V , thenV (1)� = Fix(�; V ):Example 4.8. Let us 
onsider the D 6 = h�; �; �i a
tion on L2(
). We need to 
onsider the sixirredu
ible representations of D 6 , whi
h are listed in [27℄, to �nd the isotypi
 de
omposition ofL2(
). Sin
e these isotypi
 
omponents are 
entral to our problem, we drop the D 6 and de�neV (j) := V (j)D6 , j = 1; 2; : : : ; 6 as follows:V (1) = fu 2 L2(
) j � � u = u; � � u = u; � � u = ug(13) V (2) = fu 2 L2(
) j � � u = u; � � u = �u; � � u = �ugV (3) = fu 2 L2(
) j � � u = �u; � � u = u; � � u = �ugV (4) = fu 2 L2(
) j � � u = �u; � � u = �u; � � u = ugV (5) = fu 2 L2(
) j �3 � u = u; u+ �2 � u+ �4 � u = 0gV (6) = fu 2 L2(
) j �3 � u = �u; u+ �2 � u+ �4 � u = 0g:Example 4.9. The isotypi
 de
omposition of �13 = h�i �= Z6 illustrates some features of real repre-sentation theory. The irredu
ible representations of Z6 over C are all one-dimensional. They are�(j)(�) = (ei�=3)j�1 for j = 1; 2; : : : ; 6. Over the �eld R, however, the one-dimensional irredu
iblerepresentations of Z6 are given by(14) �(1)(�) = 1; �(2)(�) = �1;and the two-dimensional irredu
ible representations of Z6, up to similarity transformations, aregiven by(15) �(3)(�) =  �12 p32�p32 �12 ! ; �(4)(�) =  12 p32�p32 12 ! :Note that �(3)(�) is matrix for a rotation by 120Æ and �(4)(�) is a 60Æ rotation matrix.An irredu
ible representation over R is 
alled absolutely irredu
ible if it is also irredu
ible over C .For example, all of the irredu
ible representations of D 6 listed in [27℄ are absolutely irredu
ible, asare the one-dimensional irredu
ible representations of Z6 in equation (14). On the other hand, thetwo-dimensional irredu
ible representations of Z6 in equation (15) are not absolutely irredu
ible.The four isotypi
 
omponents of the h�i a
tion on L2(
) areV (1)h�i = fu 2 L2(
) j � � u = ug = V (1) � V (2)
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) j � � u = �ug = V (3) � V (4)V (3)h�i = V (5); and V (4)h�i = V (6):If we had used the 
omplex irredu
ible representations, some of the 
orresponding isotypi
 
ompo-nents would 
ontain 
omplex-valued fun
tions. It is more natural to use real irredu
ible representa-tions, and 
onsider only real-valued fun
tions. The pri
e we pay is that most of the representationtheory found in books, and built into GAP, is done for 
omplex irredu
ible representations.The isotypi
 de
omposition for ea
h of the 23 isotropy subgroups, �i, of D 6 �Z2 
an be writtenas a dire
t sum of some subset of the eight spa
es V (j), for j = 1; : : : ; 4, and V (j)1 and V (j)2 forj = 5; 6 de�ned in (13) and [27℄. The C++ program 
an easily 
he
k if a fun
tion is in any of theisotypi
 
omponents V (j)�i of BM for ea
h of the �i, i = 0; 1; : : : ; 22, a
tions.Symmetry-Breaking Bifur
ations. The fa
t that there are 23 possible symmetry types ofsolutions to the PDE (1) begs the question, do solutions with ea
h of these symmetry types exist?Clearly the trivial solution u = 0, with symmetry type S0, exits. Our pro
edure for �ndingapproximate solutions with ea
h of these symmetry types is to start with the trivial solution andre
ursively follow solution bran
hes 
reated at symmetry-breaking bifur
ations.Let us start by abstra
ting the PDE de�ned by (1), whi
h depends on the real parameter �. LetV be an inner produ
t spa
e and J : R�V ! R be a family of �0�invariant fun
tions that dependson a parameter �. That is, J(�; 
 � u) = J(�; u) for all 
 2 �0 and u 2 V . It is understood that �0is the largest known group for whi
h J is invariant; of 
ourse J is also invariant under any subgroupof �0. We will use �, or �i, to refer to an isotropy subgroup of the \full" group �0. Consider thesteady-state bifur
ation problem g(�; u) = 0, where g(�; u) = rJ(�; u). Throughout this paper,the gradient r a
ts on the u 
omponent. The solutions to g(�; u) = 0 are 
riti
al points of J , sowe use the terms \solution" and \
riti
al point" inter
hangeably. Note that g : R � V ! V is afamily of �0�equivariant gradient operators on V . That is, g(�; 
 � u) = 
 � g(�; u). For our PDE,�0 = D 6 � Z2. In the numeri
al implementation, V = RM �= BM and g is de�ned in (5).We de�ne a bran
h of solutions to be a 
onne
ted 
omponent of f(�; u) 2 R � L2(
) j g(�; u) =0; Stab(u) = �g, where � is 
alled the isotropy subgroup, or symmetry, of the bran
h. A bran
h ofsolutions B1 has a symmetry-breaking bifur
ation at the bifur
ation point (��; u�) 2 B1 if a bran
hof solutions, B2, with a di�erent symmetry, has (��; u�) as a limit point but (��; u�) =2 B2. We saythat bran
h B2 is 
reated at this bifur
ation, and often refer to B1 as the mother bran
h and B2as the daughter bran
h. The symmetry of the daughter bran
h is always a proper subgroup of thesymmetry of the mother bran
h. That is, the daughter has less symmetry than the mother.The main tool for �nding bifur
ation points is the Hessian of the energy fun
tional, h. If (��; u�)is a bifur
ation point, then h(��; u�) is not invertible, sin
e otherwise the impli
it fun
tion theoremwould guarantee the existen
e of a unique lo
al solution bran
h. The Morse index (MI) of a 
riti
alpoint (�; u) is de�ned to be the number of negative eigenvalues of h(�; u) = D2J(�; u), providedno eigenvalue is 0. The Hessian is symmetri
, so all of its eigenvalues are real. The MI on a bran
hof solutions typi
ally 
hanges at a bifur
ation point.Example 4.10. The trivial solution to (1, 2) is u = 0, and the trivial bran
h is f(�; 0) j � 2 Rg.Sin
e h(�; 0)(v) = �v+ �v, the bifur
ation points of the trivial bran
h are (�i; 0), where �i; i 2 N,are the eigenvalues (3). If �i < � < �i+1, then the MI of the trivial solution (�; 0) is i. The i-thprimary bran
h is 
reated at the bifur
ation point (�i; 0) on the trivial bran
h. In 
ases with doubleeigenvalues there are two bran
hes 
reated at the same point in our problem. For example, these
ond and third primary bran
hes are 
reated at �2 = �3. Near (�i; 0), the solutions on the i-thprimary bran
h are approximately some 
onstant times the i-th eigenfun
tion of the Lapla
ian,  i.We de�ne a degenerate 
riti
al point, or a degenerate solution, to be a point (��; u�) whi
hsatis�es g(��; u�) = 0 and det h(��; u�) = 0. Thus, every bifur
ation point is a degenerate 
riti
alpoint. Some degenerate 
riti
al points are not bifur
ation points. For example, when a bran
h
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 in �, the fold point is degenerate, but is not a bifur
ation point aswe have de�ned it. (Note that we avoid the term \saddle-node bifur
ation" sin
e there is really nobifur
ation.)Let us develop some notation to talk about bifur
ations. Suppose that (��; u�) is an isolateddegenerate 
riti
al point of a �0-equivariant system g(�; u) = 0. Let � = Stab(u�;�0), and de�neL := h(��; u�). Note that �, not �0, is important as far as the bifur
ation of (��; u�) is 
on
erned.Let E be the null spa
e of the �-equivariant operator L. We 
all E the 
enter eigenspa
e. Let �0be the point stabilizer of E. The de�nitions are repeated here for referen
e:(16) � := Stab(u�;�0); L := h(��; u�); E := N(L); �0 := pStab(E;�):If e 2 E, then L(e) = 0 by de�nition. For any 
 2 �, 
 � e 2 E sin
e the �-equivarian
e of Limplies that L(
 � e) = 
 � L(e) = 0. Hen
e,Stab(E;�) = �:Note that Stab(E;�)=pStab(E;�) = �=�0 a
ts faithfully on E. In the usual 
ase where (��; u�) isa bifur
ation point, not just a degenerate 
riti
al point, we say that �=�0 is the symmetry group ofthe bifur
ation, or that (��; u�) undergoes a bifur
ation with �=�0 symmetry.In the notation of (16), L sends ea
h of the isotypi
 
omponents V (j)� to itself [27, 31, 34℄.Barring \a

idental degenera
y," the 
enter eigenspa
e E is a �-irredu
ible subspa
e. Thus, E istypi
ally a subspa
e of exa
tly one isotypi
 
omponent V (j)� , and dim(E) is the dimension dj ofthe 
orresponding 
orresponding irredu
ible representation, �(j). Furthermore, the point stabilizerof E is the kernel of �(j) and 
an be 
omputed without knowing E. In summary, at a generi
bifur
ation point there is some irredu
ible representation �(j) of � su
h that:E is �-irredu
ible; E � V (j)� ; dim(E) = �MI = dj ; �0 = f
 2 � j �(j)(
) = Ig:A

idental degenera
y is dis
ussed in [27, 31, 34℄. We did not en
ounter any a

idental degenera
yin our numeri
al investigation of (1, 2), so we will not dis
uss it further here.We �nally have the ba
kground to des
ribe the bifur
ations whi
h o

ur in equivariant systems.The goal is to predi
t what solutions will be 
reated at ea
h of the symmetry breaking bifur
ations,and know what ve
tors in E to use to start these bran
hes using the pmGNGA. While su
h apredi
tion is impossible for some 
ompli
ated groups, we 
an determine how to follow all of thebifur
ating bran
hes in the system (1, 2). We follow the treatment and notation of [10, 11℄. At asymmetry-breaking bifur
ation we 
an translate (��; u�) to the origin, and we 
ould, in prin
iple,do an equivariant Liapunov-S
hmidt redu
tion or 
enter manifold redu
tion to obtain redu
edbifur
ation equations ~g : R � E ! E where ~g(0; 0) = 0, D~g(0; 0) = 0, and ~g is � := Stab(u�)-equivariant. It is important to realize that we do not a
tually need to perform the Liapunov-S
hmidtredu
tion.The most powerful tool for understanding symmetry breaking bifur
ations is the EquivariantBran
hing Lemma. Re
all that absolutely irredu
ible representations were de�ned in Example 4.9.See [6, 10, 11℄ for a thorough dis
ussion of the Equivariant Bran
hing Lemma, in
luding furtherreferen
es.Theorem 4.11. Equivariant Bran
hing Lemma (EBL) Suppose � a
ts absolutely irredu
iblyon the spa
e E, and let ~g : R � E ! E be �-equivariant. Assume that � a
ts nontrivially, so~g(�; 0) = 0. Sin
e � a
ts absolutely irredu
ibly, D~g(�; 0) = 
(�)Id for some fun
tion 
 : R ! R,where Id is the identity matrix of size d = dim(E). Assume that 
(0) = 0 and 
0(0) 6= 0. Let �be an isotropy subgroup of the � a
tion on E with dimFix(�; E) = 1. Then there are at least twosolution bran
hes of ~g(�; u) = 0 with isotropy subgroup � 
reated at (0; 0).The EBL, 
ombined with Liapunov-S
hmidt theory, implies that there are at least two solutionbran
hes of the full problem g(�; u) = 0 with isotropy subgroup � 
reated at the bifur
ation point(��; u�). We 
all these newly 
reated bran
hes EBL bran
hes sin
e their existen
e 
an be predi
tedby the EBL. Other bran
hes 
reated at a bifur
ation are 
alled non-EBL bran
hes.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 13h�; �; �i h�; �; �i
��

h�; �; �i
��

h�; �; �i
��

h�; �; �i
��

h�; �; �i
����

��
��

�

��
??

??
??

?h�i h�2; �i h�2; �i h�; �i
��

h�i
��

??
??

??
??

h�i
����

��
��

��h�3i h1iFigure 3. Diagrams of the six isotropy latti
es for the a
tions of D 6 = h�; �; �i onea
h of the six isotypi
 
omponents V (j) of the D 6 a
tion on L2(
). This des
ribesthe six possibilities (barring a

idental degenera
y) for the D 6 a
tion on the 
entereigenspa
e E at a degenerate 
riti
al point.Following [6, 10, 11℄, we de�ne a maximal isotropy subgroup of a � a
tion on V to be an isotropysubgroup � 6= � with the property that if � is an isotropy subgroup su
h that � � �, then � = �or � = �. In other words, a maximal isotropy subgroup is a maximal proper isotropy subgroup. Ifdim(Fix(�; E)) = 1, then � is a maximal isotropy subgroup of the � a
tion on E. The 
onverse,however, is not true.In gradient systems, for example the PDE (1), more 
an be said. If � is any maximal isotropysubgroup of the � a
tion on E, then there is typi
ally a solution bran
h 
reated at the bifur
ationwith isotropy subgroup �. If dimFix(�; E) � 2, the bran
h 
reated is an example of a non-EBLbran
h. See [30℄ for a dis
ussion of bifur
ations in gradient systems.By Proposition 4.5, the e�e
tive symmetry group of ~g, restri
ted to Fix(�; E), is N�(�)=�. Thise�e
tive symmetry group determines how solutions with symmetry � bifur
ate.Example 4.12. Consider a degenerate 
riti
al point with isotropy subgroup �1 = D 6 = h�; �; �i.Barring a

idental degenera
y, the 
enter eigenspa
e E is a subspa
e of one of the 6 isotypi

omponents of the D 6 a
tion on L2(
) des
ribed in Example 4.8. Figure 3 shows the latti
e ofisotropy subgroups for D 6 a
ting on ea
h of these 6 isotypi
 
omponents V (j). These 6 
ases 
anbe distinguished by determining whi
h isotypi
 
omponent an arbitrary eigenfun
tion in E belongsto. We shall go through ea
h of these six 
ases, and des
ribe the resulting bifur
ation. Re
all that� = �1 = D 6 for ea
h of these six 
ases, and �0 = pStab(E;�).E � V (1) ) �0 = �1 = h�; �; �i; dimE = 1; �=�0 �= h1iE � V (2) ) �0 = �13 = h�i; dimE = 1; �=�0 �= Z2E � V (3) ) �0 = �9 = h�2; �i; dimE = 1; �=�0 �= Z2E � V (4) ) �0 = �10 = h�2; �i; dimE = 1; �=�0 �= Z2E � V (5) ) �0 = �19 = h�3i; dimE = 2; �=�0 �= D 3E � V (6) ) �0 = �22 = h1i; dimE = 2; �=�0 �= D 6 :The �rst 
ase, E � V (1) = Fix(�1; L2(
)), does not lead to a symmetry-breaking bifur
ation. TheD 6 a
tion on E is trivial, so the EBL does not apply. The degenerate 
riti
al point (u�; ��) istypi
ally a fold point (or saddle-node), not a bifur
ation point. In the neighborhood of the foldpoint there is only one solution bran
h, with isotropy subgroup �1, and the bran
h lies to one sideof � = �� or the other.The next three 
ases, with �=�0 �= Z2 symmetry, are 
alled pit
hfork bifur
ations. Clearly, theonly maximal isotropy subgroup is �0 in ea
h 
ase, and the EBL applies. The e�e
tive symmetrygroup a
ting on E is Z2, so there are two 
onjugate solution bran
hes 
reated at the bifur
ation.In the bran
h following 
ode we follow one of these bran
hes using the pmGNGA starting with anyeigenve
tor e 2 E.
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��

h�i
��

h�i
��h�2i h�3i h1iFigure 4. The diagrams of the four isotropy latti
es for the a
tions of �13 = h�ion ea
h of the four isotypi
 
omponents V (j)h�i of the �13 a
tion on L2(
). Thisdes
ribes the four possibilities (barring a

idental degenera
y) for the �13 a
tion onthe 
enter eigenspa
e E at a degenerate 
riti
al point.The next 
ase, with E � V (5), is a bifur
ation with D 3 symmetry. The maximal isotropysubgroup �5 = h�; �i satis�esdimFix(�5; E) = 1; and N�1(�5)=�5 = h1i:Our bran
h following 
ode uses a proje
tion operator to �nd an eigenve
tor e 2 E with Stab(e;�1) =�5. The pmGNGA using this eigenve
tor e will follow one of the solution bran
hes 
reated at thebifur
ation, and the pmGNGA using the negative eigenve
tor �e will �nd a bran
h that is not
onjugate to the �rst. Bifur
ations with D 3 symmetry are typi
ally trans
riti
al, and two D 3 -orbitsof bran
hes are 
reated at the bifur
ation [10, 11℄.The last 
ase, with E � V (6), is a bifur
ation with D 6 symmetry. There are two maximalsymmetry types, the 
onjuga
y 
lasses of �15 and �16. A 
al
ulation shows thatdimFix(�15; E) = dimFix(�16; E) = 1; and N�1(�15)=�15 = N�1(�16)=�16 = Z2:To follow one bran
h from ea
h of the group orbits of solution bran
hes 
reated at this bifur
ation,it suÆ
es to use the pmGNGA twi
e, with the eigenve
tors e1; e2 2 E, where Stab(e1;�1) = �15and Stab(e2;�1) = �16. It is well-known that these EBL-bran
hes are typi
ally the only bran
hes
reated at a bifur
ation with D 6 symmetry [10, 11℄.Example 4.13. Consider a degenerate 
riti
al point with isotropy subgroup �13 = h�i �= Z6. Barringa

idental degenera
y, the 
enter eigenspa
e E is a subspa
e of one of the 4 isotypi
 
omponentsV (j)h�i de�ned in Example 4.9. Figure 4 shows the latti
e of isotropy subgroups for �13 a
ting onea
h of these 4 isotypi
 
omponents. Re
all that � = �13 = h�i for ea
h of these 
ases, and theminimal isotropy subgroup is �0 = pStab(E;�). We shall go through ea
h of the four 
ases, anddes
ribe the resulting bifur
ation:E � V (1)h�i = V (1) � V (2) ) �0 = �13 = h�i; dimE = 1; �=�0 �= h1iE � V (2)h�i = V (3) � V (4) ) �0 = �21 = h�2i; dimE = 1; �=�0 �= Z2E � V (3)h�i = V (5) ) �0 = �19 = h�3i; dimE = 2; �=�0 �= Z3E � V (4)h�i = V (6) ) �0 = �22 = h1i; dimE = 2; �=�0 �= Z6:The �rst two 
ases are analogous to the �rst two 
ases in Example 4.12. When �=�0 �= h1i there is afold point, but no symmetry breaking bifur
ation. There is a pit
hfork bifur
ation when �=�0 �= Z2.The next two 
ases are interesting be
ause �13 does not a
t absolutely irredu
ibly on E, and theEBL does not apply. In both 
ases �0 is a maximal isotropy subgroup.In the third 
ase, where E � V (3)h�i = V (5), every eigenfun
tion in the 2-dimensional E hasisotropy subgroup �19. Sin
e we have a gradient system, we know that solution bran
hes withisotropy subgroup �19 are 
reated at this bifur
ation with Z3 symmetry. The bifur
ation is well-understood, and it looks like a bifur
ation with D 3 symmetry, ex
ept that the \angle" of thebifur
ating solutions in the E plane is arbitrary. This means that trial and error is needed, in
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tions in E for whi
h the pmGNGA will 
onverge. If a bran
h is found fora starting eigenfun
tion e, then the eigenfun
tion �e is used to �nd the other solution bran
h.In the fourth 
ase, where E � V (4)h�i = V (6), every eigenfun
tion in E has the same isotropysubgroup: �22 = h1i. Gradient bifur
ations with Z6 symmetry look like bifur
ations with D 6symmetry, ex
ept that the angle in the E plane is arbitrary. Again, trial and error is needed to�nd starting eigenfun
tions for whi
h the pmGNGA 
onverges.The Bifur
ation Digraph. A 
al
ulation similar to those summarized in Examples 4.12 and4.13 was done for ea
h of the isotropy subgroups of the D 6 �Z2 a
tion on L2(
). The 
al
ulationswere done by hand, and veri�ed with GAP. There are 59 generi
 symmetry-breaking bifur
ations,one for ea
h isotypi
 
omponent V (j)�i on whi
h �i a
ts nontrivially. The amount of information isoverwhelming, so we display the essential results in what we 
all a bifur
ation digraph.De�nition 4.14. The bifur
ation digraph of the �0 a
tion on a real ve
tor spa
e V is a dire
tedgraph with labelled arrows. The verti
es are the symmetry types (equivalen
e 
lasses of isotropysubgroups). Given � � �, two isotropy subgroups of the �0 a
tion on V , we draw an arrow from[�℄ to [�℄ i� � is a maximal isotropy subgroup of the � a
tion on some isotypi
 
omponent V (j)�of V . Ea
h arrow has the label �=�0, where �0 is the kernel of the � a
tion on V (j)� . Furthermore,ea
h arrow is either solid, dashed or dotted. The arrow issolid if dimFix(�; E) = 1 and N�(�)=� = Z2;dashed if dimFix(�; E) = 1 and N�(�)=� = h1i; anddotted if dimFix(�; E) � 2;where E is any irredu
ible subspa
e 
ontained in V (j)� .Note that if dimFix(�; E) = 1, then N�(�)=� is either Z2 or h1i, sin
e these are the only lineargroup a
tions on E �= R1 . Thus, the three arrow types (solid, dashed, and dotted) exhaust allpossibilities.Theorem 4.15. For a given �0 a
tion on V , every arrow in the diagram of the isotropy latti
e isan arrow in the bifur
ation digraph.Proof. Suppose [�℄! [�℄ is an arrow in the diagram of the isotropy latti
e. Then some �� 2 [�℄ is amaximal isotropy subgroup of the � a
tion on V . Choose u� 2 V su
h that Stab(u�;�) = ��. Su
ha u� exists sin
e �� is an isotropy subgroup. Now 
onsider the isotypi
 de
omposition fV (j)� gj2Jof V . We 
an write u� = Pj2J u(j), where u(j) 2 V (j)� are uniquely determined. Let 
 be anyelement of ��. Then 
 � u� =Pj2J 
 � u(j) = u�. Sin
e ea
h of the 
omponents V (j)� is �-invariant,
 � u(j) = u(j) for ea
h j 2 J . Thus �� � Stab(u(j);�) for ea
h j 2 J . Either Stab(u(j);�) = � orStab(u(j);�) = ��, sin
e �� is a maximal isotropy subgroup of the � a
tion on V . If Stab(u(j);�) =� for all j 2 J , then Stab(u�;�) = �. But Stab(u�;�) 6= �, so Stab(u(j);�) = �� for some j 2 J ,and �� is a maximal isotropy subgroup of the � a
tion on this 
omponent V (j)� of V . Therefore thebifur
ation digraph has an arrow from [�℄ to [��℄ = [�℄. �Theorem 4.15 says that the bifur
ation digraph is an extension of the diagram of the isotropylatti
e. The bifur
ation digraph has more arrows, in general. As with the latti
e of isotropysubgroups, we usually draw a single element � of the equivalen
e 
lass [�℄ for ea
h vertex of thebifur
ation digraph.An arrow from � to � in the bifur
ation digraph indi
ates that a �0-equivariant gradient systemg(�; u) = 0 
an have a generi
 symmetry-breaking bifur
ation where a mother bran
h with isotropysubgroup � 
reates a daughter bran
h with isotropy subgroup �. The symmetry group of thebifur
ation is �=�0, and the 
enter eigenspa
e at the bifur
ation point is the �-irredu
ible spa
e
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oded in the label and arrow type is used by the heuristi
s of our bran
h-following algorithm. A solid arrow indi
ates that every e in the one-dimensional spa
e Fix(�; E)satis�es 
 � e = �e for some 
 2 �. Thus, there is typi
ally a pit
hfork bifur
ation in the spa
eFix(�; E). A dashed arrow indi
ates that 
 � e = e for all e 2 Fix(�; E) and 
 2 �. Thus,the daughter bran
hes bifur
ating in the dire
tions e and �e are not 
onjugate. A dotted arrowindi
ates that the EBL does not apply to this bifur
ation. As mentioned above, bran
hing ofsolutions 
orresponding to a dotted arrow is generi
 in gradient systems [30, 10℄.A 
ondensed bifur
ation digraph for the D 6 � Z2 a
tion on L2(
) is shown in Figure 5. The
al
ulations for the dire
ted edges 
oming from �1 and �13 are des
ribed in examples 4.12 ane 4.13,respe
tively. The digraph has 65 dire
ted edges, but there are only 5 possibilities for the symmetrygroup of the bifur
ation: �=�0 = Z2, Z3, Z6, D 3 , or D 6 . The symmetry-breaking bifur
ation withea
h of these symmetries is well understood [10, 11℄, and ea
h is des
ribed brie
y in Example 4.12or 4.13. This digraph is of great help in writing an automated 
ode for bran
h following.In our problem the label �=�0 and arrow type are suÆ
ient to 
hara
terize the bifur
ation
ompletely. For more 
ompli
ated groups, the label may need to 
ontain more information aboutthe a
tion of � on E. For example the label �=�0 = S4 would be ambiguous, sin
e S4 has twofaithful irredu
ible representations with di�erent latti
es of isotropy subgroups.5. Symmetry and Computational Effi
ien
y.Several modi�
ations of the GNGA (2.1) take advantage of symmetry to speed up the 
al
ula-tions. The symmetry for
es many of the 
omponents of the gradient and Hessian to be zero. Weidenti�ed these zero 
omponents and avoided doing the time-
onsuming numeri
al integrations to
ompute them. At the start of the C++ program, the isotropy subgroup, �i, of the initial guess is
omputed. Re
all that there are M modes in the Galerkin spa
e BM , so dim(BM ) = M . De�neMi := dim(Fix(�i; BM )). We 
hose the representatives �i within ea
h 
onjuga
y 
lass so thatFix(�i; BM ) is a 
oordinate subspa
e of BM . Thus,M �Mi 
omponents of the gradient g(�; u) arezero if Fix(u) = �i. The numeri
al integrations in (5) are done only for the Mi potentially nonzero
omponents of g. Similarly, Mi(Mi + 1)=2 rather than M(M + 1)=2 numeri
al integrations areneeded to 
ompute the part of the Hessian matrix h needed by the GNGA algorithm: The numer-i
al integrations in (6) are done only if  j and  k are both in Fix(�i; BM ). The system h� = g forthe Newton step � redu
es to a system of Mi equations in Mi unknowns. After Newton's method
onverges to a solution, the full Hessian needs to be 
al
ulated in order to 
ompute the MI. Here,too, we 
an take advantage of the symmetry: Sin
e h is �i -equivariant, hj k = 0 if  j and  k arein di�erent isotypi
 
omponents V (j)�i of BM .As an example, 
onsider the exe
ution time for approximating a solution with �1 symmetryusing M = 300 modes and a level ` = 5 grid on a 1GHz PC. Our C++ 
ode uses only M1 = 30modes, and takes about 1.5 se
onds per Newton step, 
ompared to 44 se
onds when the symmetryspeedup is not implemented. 6. Automated Bran
h Following.The bran
h following 
ode is a 
omplex 
olle
tion of about a dozen Perl s
ripts,Mathemati
a andGnuplot s
ripts, and a C++ program. These programs write and 
all ea
h other fully automati
allyand 
ommuni
ate through output �les, pipes and 
ommand line arguments. A 
omplete bifur
ationdiagram 
an be produ
ed by a single 
all to the main Perl s
ript.Two 
hoi
es for the fun
tion of u plotted vs. � are shown in Figure 6. In most bifur
ationdiagrams we plot approximate solutions u evaluated at a generi
 point (2=27; 4p3=27) (the big dotin Figure 1) versus the parameter �; other 
hoi
es for the verti
al axis su
h as J(u) or kuk1 lead toless visible separation of bran
hes. Two 
onjugate solutions 
an have di�erent values at the generi
point, but sin
e our program follows only one bran
h in ea
h group orbit this does not 
ause aproblem.
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ww�22 = h1iFigure 5. The bifur
ation digraph for the D 6 � Z2 a
tion on L2(
) extends thediagram of the isotropy latti
e. The digraph shown is 
ondensed as in Figure 2.The arrows indi
ate generi
 symmetry breaking bifur
ations. The Morse index ofthe mother bran
h 
hanges by 1 at bifur
ations with Z2 symmetry, and it 
hangesby 2 at all other bifur
ations shown here.The C++ program implements the GNGA algorithm. Its input is a ve
tor of 
oeÆ
ients a 2 RMfor an initial guess in Newton's method, an interval for �, a stepsize for � and several otherparameters su
h as the grid level. It �nds solutions on a single bran
h of the bifur
ation diagram.Every solution is written as a single line in an output �le. This line 
ontains all the informationabout the solution, and 
an be used to write an input �le for a subsequent 
all to the same C++program.The C++ program �nds one bran
h (referred to as the main bran
h) and a short segment of ea
hof the daughter bran
hes 
reated at bifur
ations of the main bran
h. The 
oeÆ
ients approximatingthe �rst solution on the bran
h are supplied to the C++ program. Newton's method is used to �ndthis �rst solution, then � is in
remented and the next solution is found. The program attempts tofollow the main bran
h all the way to the �nal �, usually 0. Heuristi
s are used to double or halve
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ation diagrams of the sixth primary bran
h (whi
h bifur
ates from�6), showing jjujj22 and u(2=27; 4p3=27) as a fun
tion of �. Sin
e jjujj22 is a D 6 �Z2-invariant fun
tion of u, ea
h group orbit of solution bran
hes is shown as one 
urve onthe left. The disadvantage of plotting jjujj22 is that the 
urves in many bifur
ationdiagrams are not well separated. The point (2=27; 4p3=27) is not on any of there
e
tion axes of the snow
ake region. There are 2 primary bran
hes with symmetryS1, four se
ondary bran
hes with symmetry S9, and four se
ondary bran
hes withsymmetry S10. Our 
hoi
e for the bifur
ation diagrams in this paper 
ombines theadvantages of both views: u(2=27; 4p3=27) is plotted as a fun
tion of � for exa
tlyone bran
h (the solid lines) from ea
h group orbit. Unless indi
ated otherwise, all�gures were produ
ed with level ` = 5 and M = 300 modes.the � stepsize when needed, keeping the stepsize in the interval from the initial stepsize (input tothe C++ program) to 1=32 of the initial stepsize. For example, the stepsize is halved if Newton'smethod does not 
onverge, if it 
onverges to a solution with the wrong symmetry, or if more thanone bifur
ation is dete
ted in one � step.The Morse index is 
omputed at ea
h � value on the main bran
h. When the MI 
hanges asubroutine is 
alled to handle the bifur
ation before the main bran
h is 
ontinued. If the MI
hanges from m1 to m2, we de�ne m = maxfm1;m2g. Then the bifur
ation point is approximatedby using the se
ant method to set the m-th eigenvalue of the Hessian h(u) to zero as a fun
tion of�. The GNGA is needed at ea
h step of the se
ant method to 
ompute u = u(�). We �nd that theGNGA works well even though we are approximating a solution for whi
h the Hessian is singular.After the bifur
ation point is approximated, a short segment of ea
h bifur
ating bran
h is 
om-puted and one output �le is written for ea
h bran
h, using Algorithm 6.1. If the EquivariantBran
hing Lemma (EBL) holds, then we know exa
tly whi
h 
riti
al eigenve
tor to use for ea
hbran
h.Algorithm 6.1. (follow_bran
h)(1) Input: bifur
ation point (�; a), one 
riti
al eigenve
tor e 2 RM ,and stepsize �� < 0. Output: A file is written for one daughter bran
h.(2) Write (�; a) to output file. Set t = 0:1. Set �b = �.(3) Compute index k so that jekj � jeij for all i 2 f1; : : : ;Mg.(4) Repeat until �b � � < ��, or t < 0:1=32 or some maximum number of points havebeen written to the file.(a) Do the pmGNGA with initial guess (�; a+ t e), fixing 
oeffi
ient k.(b) If Newton's method 
onverges repla
e (�; a) by the solution found andwrite this point to the file, else t t=2.
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Figure 7. A partial bifur
ation diagram of the 14-th primary bran
h showing a D 6 ,a D 3 and several Z2 bifur
ations. At the D 6 bifur
ation, 12 bran
hes in two di�erentgroup orbits are born. In a

ordan
e with Figure 6, only two bran
hes are followedand shown on this bifur
ation diagram. An animation showing the followed bran
hwith symmetry type S15 is shown in s3s15.gif, and an animation of the followedbran
h with symmetry type S17 is in s3s17s7.gif. Note that this bran
h with S17symmetry \dies" at a bifur
ation with Z2 symmetry, showing that we 
annot alwaysmake a 
onsistent distin
tion between se
ondary and tertiary bran
hes. At the D 3bifur
ation, 6 bran
hes in two di�erent group orbits are born. As before, only twobran
hes are followed. An animation showing the \upper" bran
h with symmetrytype S7, through the bifur
ation point and 
ontinuing to the \lower" bran
h withsymmetry type S7 is shown in s7s3s7.gif. For 
larity, the bran
hes bifur
atingfrom 3 of the Z2 bifur
ations are not shown. The numbers next to a bran
h indi
atethe MI of the solution. The MI 
hanges by 2 at a square, and by 1 at a 
ir
le.Note that the pmGNGA 
an follow a bran
h that bifur
ates to the right or the left. Thosethat bifur
ate to the right usually turn over in a saddle-node \bifur
ation" that does not o�er anydiÆ
ulty for the pmGNGA. Figures 7 and 8 show several examples of bifur
ations.The EBL does not hold at bifur
ations with Z3 and Z6 symmetry in our problem, sin
e the 2-dimensional 
enter eigenspa
e does not have a 1-dimensional subspa
e with more symmetry. Figure8 shows one of the few bifur
ations with Z3 symmetry that we observed. By good fortune, thebran
hes with symmetry type S19 were su

essfully followed using the same eigenve
tors one would
hoose for a bifur
ation with D 3 symmetry. A better method for following bifur
ating solutions thatare not predi
ted by the EBL would be to use the pmGNGA with random (normalized) eigenve
torsin E repeatedly until it appears that all equivalen
e 
lasses of solutions have been found.The bran
h following 
ode is 
alled re
ursively by a main Perl s
ript. Initially, the C++ programfollows the trivial bran
h on a given � range. This results in an output �le for the trivial bran
hand another output �le for ea
h bifur
ating primary bran
h. Then the short parts of the primarybran
hes are followed with more 
alls to the C++ program. Any bifur
ating bran
h results ina new output �le, and the Perl s
ript makes another 
all to the C++ program to 
ontinue that
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Figure 8. The D 3 bifur
ation of the 13-th primary bran
h is on the left. This is theonly observed D 3 bifur
ation that is not trans
riti
al. An animation of the upperbran
h with symmetry type S5, through the bifur
ation point and 
ontinuing withthe lower bran
h is shown in s5s1s5.gif. A Z3 bifur
ation of a daughter of the24-th primary bran
h is shown on the right. The bran
hes 
reated at this bifur
ationare not des
ribed by the EBL. An animation of the bran
hes with symmetry typeS19 is shown in s19s13s19.gif.bran
h. The main Perl s
ript's most important job is book keeping. It saves the output �les withdistin
t names, and 
alls the bran
h following 
ode to 
ontinue ea
h of the new bran
hes. Thepro
ess stops when all the bran
hes are fully followed within the given � range.In this way, a 
omplete bifur
ation diagram is produ
ed by a single invo
ation of the main Perls
ript. There is no need to guess initial 
onditions for input to Newton's method, sin
e the trivialsolution is known exa
tly (a = 0) and all the other solutions are followed automati
ally.The main Perl s
ript 
alls several other smaller s
ripts. For example, there is a s
ript whi
hextra
ts solutions from output �les and feeds them to the bran
h following 
ode as input. Anothers
ript 
reates Gnuplot s
ripts on the 
y to generate bifur
ation diagrams. Perl s
ripts are used toautomati
ally number and store the output �les and 
reate human readable reports about them.7. Numeri
al Results.Our goal was to �nd solutions to (1, 2) at � = 0 with ea
h of the 23 symmetry types. The24-th primary bran
h is the �rst one with symmetry type S2, so we followed the �rst 24 primarybran
hes. With level ` = 5 and M = 300 modes, whi
h gave our most a

urate results, this foundsolutions with all symmetry types ex
ept S11 and S14. We then sear
hed the �rst 100 primarybran
hes, only following solutions with symmetry above S11 and S14 on the bifur
ation digraph(Figure 5.) In this way we found solutions with all 23 symmetry types. The bifur
ation diagramswhi
h lead to these solutions are shown in Figures 9{12. We 
hose one solution at � = 0 withea
h symmetry type by taking the one des
ended from the lowest primary bran
h. These 
hoi
esare indi
ated by dots in Figures 9{12, and the 
orresponding 
ontour diagrams of the solutions areshown in Figures 13 and 14. The 
ontour diagrams use white for u > 0 and bla
k for u < 0, andgray indi
ates u = 0. Equally spa
ed 
ontours are drawn along with dots for lo
al extrema. Detailsabout the te
hnique for generating these 
ontour diagrams are found in [27℄.We ran our experiments using a range of modes and levels in order to observe 
onvergen
e andqualitative stability of the implementation of our algorithm. At level ` = 5 we have 
omputed 300eigenfun
tions so M � 300 is possible. At level ` = 6 we 
omputed only 100 eigenfun
tions. Dueto our limited 
omputational resour
es, using more than 100 modes on level 6 was not pra
ti
al.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 21

 0  50  100  150  200

-10

-5

 0

 5

 10

 15

u(
2/

27
,3

1/
2 4/

27
)

λ

S10

S1
S9

S6
S1
S8
S0

S7
S5

λ1

λ2

λ3

λ4

λ5 λ6

Figure 9. The 
omplete bifur
ation diagram for the �rst six primary bran
hesbifur
ating from the trivial bran
h. The se
ond bran
h, with symmetry S7, 
ontainsthe CCN solution. The dots at � = 0 in Figures 9{12 
orrespond to solutionsdepi
ted in Figures 13 and 14. We used the level 5 grid with 300 modes in 
reatingall bifur
ation diagrams. In Figure 15 
onvergen
e data for the solution of symmetrytype S10 at � = 0 is provided.As an indi
ation of the 
onvergen
e, 
onsider the bifur
ation diagram in Figure 9. The diagramlooks qualitatively the same for any 
hoi
e of ` andM that we used. The position of the bifur
ationpoint 
reating the S10 solution (near � = 30) 
hanges slightly, a

ording to this table:` = 4 ` = 5 ` = 6M = 100 35.3931 34.9814 34.9252M = 200 32.1131 32.2964M = 300 32.0518 .The level 5 and 6 approximations with M = 100 modes are very 
lose, but in
reasing the modenumber has more of an e�e
t. This indi
ates that the results with (`;M) = (5; 300) are morea

urate than those with (6; 100). Figure 15 shows how u(2=27; 4p3=27) varies with mode numberand ` for the solution with S10 symmetry at � = 0 shown in Figures 9 and 13. The horizontalsegments of the graphs 
orrespond to the addition of modes with zero 
oeÆ
ients for this solution.Based on this and other similar 
onvergen
e results, we 
hose to use level 5 with 300 modes in mostof our numeri
al experiments. 8. Con
lusions.We are 
urrently working on a more general program for re
ursive bran
h following in symmetri
systems. Starting with any graph, the analog to Equation 1 is the Partial di�eren
e Equation(PdE) Lu + f(u) = 0 [25℄, where L is the well-known dis
rete Lapla
ian on that graph and u isa real-valued fun
tion on the verti
es. Dis
retizing a PDE as we have done in this paper leads toa PdE on a graph with a large number of verti
es. The grid points are the verti
es of the graph,and the edges of the graph 
onne
t nearest neighbor grid points. Starting with an arbitrary graph,
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hes. Again, the dots at � = 0 indi
atesolutions shown in Figures 13 and 14. The 
ontour plots as a fun
tion of � areanimated for the bran
hes ending with the dots indi
ating symmetry types S15(s7s15.gif), S17 (s7s17.gif), S16 (s4s16.gif), and S22 (s4s18s22.gif).
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Figure 11. A partial bifur
ation diagram providing three additional symmetrytypes. For 
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h is not shown in this and the next �gure.
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Figure 12. A partial bifur
ation diagram 
ontaining solutions of the seven remain-ing symmetry types. Primary bran
h 24 is the �rst bran
h with symmetry type S2.The symmetry types S14 and S11 were found by sear
hing the �rst one hundredprimary bran
hes, following only those bran
hes whi
h 
an lead to solutions withthe desired symmetry. These two solutions are in
luded for 
ompleteness, but theirexisten
e for the PDE would have to be 
on�rmed with more modes and a higherlevel approximation of the eigenfun
tions.our new suite of programs will analyze the symmetry of the graph and 
ompute the bifur
ationdiagrams for the PdE on the graph.The programs we des
ribe in the 
urrent paper will work with other superlinear odd f and otherregions with hexagonal symmetry. The nonlinearity f needs to be superlinear sin
e our programassumes that the bran
hes eventually \go to the left." Our general program will not have thisrestri
tion; the GNGA and pmGNGA will be repla
ed by a single method of bran
h following thatis able to go through fold points, and has no prejudi
e about the parameter in
reasing or de
reasing.This new method of bran
h following has already been su

essfully implemented in [33℄. We hopeto write the new 
ode so that a 
luster of 
omputers 
an be used in parallel, with ea
h 
omputerfollowing a single bran
h at one time, under the 
ontrol of a 
entral PERL s
ript.With minor modi�
ations, our program would analyze the PDE (1) even when f is not odd. Theappropriate bifur
ation digraph for D 6 a
ting on L2(
) is a subgraph of the digraph in Figure 5,so the bifur
ating bran
hes would be followed properly unless the symmetry of the mother solutionis in
orre
tly identi�ed. The Perl s
ripts whi
h start with the trivial bran
h would have to bemodi�ed, sin
e u = 0 is not a solution when f is not odd (unless f(0) = 0). If f(0) = 0, thetrivial bran
h exists, but its bifur
ations are not properly des
ribed by the bifur
ation digraph inFigure 5, and some spe
ial 
ode would be needed to handle these bifur
ations.It is valid to ask the question \does the GNGA 
onverge" (as implemented in this 
urrent re-sear
h). While we do not have a 
omplete proof aÆrming the positive of this 
onje
ture, manyreferen
es 
ontain relevant theorems. The GNGA is an implementation of Newton's method, whi
hindeed 
onverges under standard assumptions. In [14℄, one �nds the 
lassi
al �xed point itera-tion proof that Newton's method in RN 
onverges when the initial guess is suÆ
iently 
lose to a



24 JOHN M. NEUBERGER, N�ANDOR SIEBEN, AND JAMES W. SWIFT
σ

τ

ρA
tion of �, �, and � . �0 = h�; �; �;�1i = D 6 � Z2 �1 = h�; �; �i = D 6

�2 = h�;��;��i �= D 6 �3 = h��; � � �i �= D 6 �4 = h��;��; �i �= D 6

�5 = h�; �i �= Z2� Z2 �6 = h��;��i �= Z2� Z2 �7 = h�;��i �= Z2� Z2

�8 = h��; �i �= Z2� Z2 �9 = h�2; �i �= D 3 �10 = h�2; �i �= D 3Figure 13. The a
tion of the generators of D 6 on the plane, along with 
ontourplots of solutions with symmetry types S0; : : : ; S10 at � = 0. Re
all that Si = [�i℄.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 25

�11 = h�2;��i �= D 3 �12 = h�2;��i �= D 3 �13 = h�i �= Z6

�14 = h��i �= Z6 �15 = h�i �= Z2 �16 = h�i �= Z2

�17 = h��i �= Z2 �18 = h��i �= Z2 �19 = h�3i �= Z2

�20 = h��3i �= Z2 �21 = h�2i �= Z3 �22 = h1iFigure 14. Contour plots of solutions with symmetry types S11; : : : ; S22 at � = 0.
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Figure 15. A plot of u(2=27; 4p3=27) as a fun
tion of the number of modes forthe lowest energy solution at � = 0 with symmetry type S10. The point at M = 300mat
hes the point labelled with S10 in Figure 9.nondegenerate zero of the obje
t fun
tion. This proof applies almost without 
hange to the in�-nite dimensional 
ase. Also addressed in [14℄ are algorithms where the obje
t fun
tion and/or itsderivative are only approximated; this would apply to our implementation due to numeri
al inte-gration errors, as well as owing to our imperfe
t knowledge of the eigenfun
tions and 
orrespondingeigenvalues. While not dis
ussed exa
tly in the 
ited literature, elementary �xed point argumentsindi
ate that the restri
tion of our obje
t fun
tion rJ to suÆ
iently large subspa
es BM will stillresult in 
onvergent iterations. It would be worthwhile to string these type of results togetherin order to obtain a \best possible" GNGA 
onvergen
e theorem. Monograph [13℄ gives an easyintrodu
tion into some of the details of implementing Newton's method to solve nonlinear prob-lems. Further, in the spirit of [7℄ and [35℄, by the invarian
e of the Newton map, any 
onvergen
eresult should hold in �xed point subspa
es 
orresponding to a given symmetry type. The arti
les[20, 35℄ and others by those authors dis
uss the 
onvergen
e of algorithms similar to the GNGA,at times also 
onsidering symmetry restri
tions. Finally, the well-known book [3℄ 
ontains relevant
onvergen
e results for Newton and approximate Newton iterative �xed point algorithms.In summary, we have written a suite of programs that automati
ally 
omputes the bifur
ationdiagram of the PDE (1, 2). The program �nds solutions with ea
h of the 23 symmetry types byfollowing solution bran
hes whi
h are 
onne
ted to the trivial bran
h by a sequen
e of symmetry-breaking bifur
ations. A thorough understanding of the possible symmetry-breaking bifur
ationsis required for this task. We introdu
ed the bifur
ation digraph, whi
h summarizes the results ofthe ne
essary symmetry 
al
ulations. For the group D 6 �Z2, these 
al
ulations were done by handand veri�ed by the GAP 
omputer program [8, 21℄. In the future, we plan to implement automatedbran
h following in systems where the symmetry group is so 
ompli
ated that GAP is ne
essary.
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