RUBBLING AND OPTIMAL RUBBLING OF GRAPHS

CHRISTOPHER BELFORD AND NANDOR SIEBEN

ABSTRACT. A pebbling move on a graph removes two pebbles at a vertex and adds one
pebble at an adjacent vertex. Rubbling is a version of pebbling where an additional move
is allowed. In this new move one pebble is removed at vertices v and w adjacent to a
vertex v and an extra pebble is added at vertex u. A vertex is reachable from a pebble
distribution if it is possible to move a pebble to that vertex using rubbling moves. The
rubbling number of a graph is the smallest number m needed to guarantee that any vertex
is reachable from any pebble distribution of m pebbles. The optimal rubbling number
is the smallest number m needed to guarantee a pebble distribution of m pebbles from
which any vertex is reachable. We determine the rubbling and optimal rubbling number of
some families of graphs and we show that Graham’s conjecture does not hold for rubbling
numbers.

1. INTRODUCTION

Graph pebbling has its origin in number theory. It is a model for the transportation of
resources. Starting with a pebble distribution on the vertices of a simple connected graph,
a pebbling move removes two pebbles from a vertex and adds one pebble at an adjacent
vertex. We can think of the pebbles as fuel containers. Then the loss of the pebble during a
move is the cost of transportation. A vertex is called reachable if a pebble can be moved to
that vertex using pebbling moves. There are several questions we can ask about pebbling.
How many pebbles will guarantee that every vertex is reachable, or that all vertices are
reachable at the same time? How can we place the smallest number of pebbles such that
every vertex is reachable? For a comprehensive list of references for the extensive literature
see the survey papers [5, 6].

In the current paper we propose the study of an extension of pebbling called rubbling. In
this version we also allow a move that removes a pebble from the vertices v and w that are
adjacent to a vertex u, and adds a pebble at vertex u. We find rubbling versions of some of the
well known pebbling tools such as the transition digraph, the No Cycle Lemma, squishing and
smoothing. We use these tools to find rubbling numbers and optimal rubbling numbers for
some families of graphs including paths, trees, complete graphs, complete bipartite graphs,
wheels and cycles. We also show that Graham’s conjecture does not hold for rubbling
numbers.

Our techniques are similar to those used in the pebbling literature, but they are not the
same. Some rubbling results require completely different tools, some require more efforts
than their pebbling counterparts. Some graphs have equal pebbling and rubbling numbers,
some have a much smaller rubbling number than pebbling number. It seems intriguing to
understand what graph properties are responsible for these differences, in particular, what
property forces the pebbling and the rubbling number to be the same. Rubbling also seems
to be connected to fractional pebbling. Developing the theory of rubbling may introduce
new tools and deeper understanding of pebbling.
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2. PRELIMINARIES

Let G be a simple connected graph. We use the notation V(G) for the vertex set and
E(Q) for the edge set. A pebble function on a graph G is a function p : V(G) — Z where p(v)
is the number of pebbles placed at v. A pebble distribution is a nonnegative pebble function.
The size of a pebble distribution p is the total number of pebbles }°, .y p(v). We are
going to use the notation p(v,..., v, %) = (a1,...,an,q(*)) to indicate that p(v;) = a; for
ie{l,...,n}and p(w) = q(w) for all w € V(G) \ {v1,...,vn}.

Definition 2.1. Consider a pebble function p on the graph G. If {v,u} € E(G) then the
pebbling move (v,v — u) removes two pebbles at vertex v and adds one pebble at vertex u
to create a new pebble function

P(v,v—u) (Uv u, *) = (p(U) - 27p(u) + 17p(*))'

If {w,u} € E(G) and v # w then the strict rubbling move (v,w — w) removes one pebble
each at vertices v and w and adds one pebble at vertex u to create a new pebble function

p(v,w—m)(v’w’u’ *) = (p(U) - 17p(w) - 17p(u) + 17p(*))'

A rubbling move is either a pebbling move or a strict rubbling move.

Note that the rubbling moves (v,w — w) and (w,v — u) are the same. Also note that
the resulting pebble function might not be a pebble distribution even if p is.

Definition 2.2. A rubbling sequence is a finite sequence s = (s1,...,s) of rubbling moves.
The pebble function gotten from the pebble function p after applying the moves in s is
denoted by ps.

The concatenation of the rubbling sequences r = (rq,...,r;) and s = (s1,...,5) is
denoted by rs = (r1,..., Tk, S1,..., 7).

Definition 2.3. A rubbling sequence (s1,...,S,) is ezecutable from the pebble distribution
p if p(s,,...s;) is nonnegative for all 4 € {1,...,n}. A vertex v of G is reachable from the
pebble distribution p if there is an executable rubbling sequence s such that ps(v) > 1. The
rubbling number p(G) of a graph G is the minimum number m such that every vertex of G
is reachable from any pebble distribution of size m.

A vertex is reachable if a pebble can be moved to that vertex using rubbling moves with
actual pebbles without ever running out of pebbles. Changing the order of moves in an
executable rubbling sequence s may result in a sequence r that is no longer executable. On
the other hand the ordering of the moves has no effect on the resulting pebble function, that
is, ps = pr. This justifies the following definition.

Definition 2.4. Let S be a multiset of rubbling moves. The pebble function gotten from
the pebble function p after applying the moves in .S in any order is denoted by pg.

3. RUBBLING TREES

The pebbling number of trees was found in [2]. We modify Chung s argument to find
the rubbling number of trees. Let v be a vertex of a tree G. Let G be the digraph gotten
from G by directing the edges towards v. A path partition of G is an ordered partition

P = (P,...,Py,) of the edges of EU into directed paths so that p; > p;+1 where p; is the
length of P; for all i. We call (p1,...,pn) the length sequence of P. A path partition of

—v
G is a path partition of @G for some vertex v of G. A path partition P majorizes another
path partition P" if (p1,...,pm) > (P},...,p),) in the lexicographic order. A path partition
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is v-mazimum if it majorizes all path partitions of —Gw. A path partition is mazimum if it
majorizes all path partitions of G.

For k € N and v € V(G) let p(G,v,k) be the minimum number m such that for every
pebble distribution p on G with size m there is an executable rubbling sequence s with
ps(v) > k. Note that p(G) = max{p(G,v,1) | v € V(G)}. Also note that p(G,v,k+1) — 1
is the maximum size of a pebble distribution on G from which at most k& pebbles can be
moved to vertex v.

Proposition 3.1. Let v be a vertex of the tree G and (p1,...,pm) be the length sequence of
a v-mazimum path partition P of Gv. Then p(G,v, k) = k2Pt + 3", 2Pi=t —m + 1 for all
k>1.

Proof. We use induction on the number of vertices of G. The formula clearly works when
[V(G)| = 1. For the inductive step let {v1,...,v,} be the set of vertices adjacent to wv.

—v
The removal of v from G creates a digraph that is the disjoint union of the directed trees

—v1 —Un —v;

G1,..., Gy . The path partition P induces a maximum path partition of G; with length
sequence (pi1 — 1,pi2,...,Dim,) for all i. With this notation, the multisets {p1,...,pm}
and {p1,1,--,Plmi>---+Pnls---»Pnmn are equal. We can assume without loss of generality

that p1 = p1,1. Let k; be the number of pebbles reaching v; from G;. Then
p(G, v, k) = max {Z(p(Gi,vi,ki +1)—1) | {%J < k} 1
i=1
and so by the inductive hypothesis

n

p(G,v, k) = max Z ((ki + 1)2ria—t 4 Z 200 — ) [k 4k, <2k — 15 4+ 1.
i=1 j=2

Since 2 + 2° > 2071 4 2b+1 for all integers satisfying a > b, the maximum occurs when
kih=2k—1land ko =---=k, =0. So

mi n m;
p(G,v, k) = 220t =t 4y opri =l oy Y (2P 4 Ny o )+

= i=2 j=2
mi n.o m; n

— kP11 4 E op1i—1 | E Zzpi,j—l _ Zm’ +1
=2 =2 j=1 i=1

m
= k2Pt 4 221%'—1 —m+ 1.
=2
O

Proposition 3.2. Let (p1,...,pm) be the length sequence of a maximum path partition of
G. Then p(G) =2P1 + Y, 2Pi~1 —m 1.

Proof. The result follows from the previous proposition and the fact that 22420 > 2¢—142b+1
for all integers satisfying a > b. O

The pebbling number of G is 7(G) = >/, 2P —m + 1 by |2]. The following is an
important special case of Proposition 3.2.

Proposition 3.3. The rubbling number of the path P, with n vertices is p(P,) = 2" 1.

Note that the pebbling number of P, is also 7(P,) = 2"~!. As another application of
Proposition 3.2, we can find the rubbling number of a complete binary tree.
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Proposition 3.4. The rubbling number of the complete binary tree By, with height h is
p(By) = 4" + (h — 3)2"1 1+ 2.
Proof. The length sequence of a maximum path partition is
2 22 2h—1

A ~ .
(2h,h—1,h—1,h—2,...,h—2,...,1,...,T).

The result now follows from the calculation below
p(Bp) =2 —1+4+202"2 1)+ +2"2(2 1)+ 2" 120 — 1) + 1
—4hp(h—2)2" (1424422 41
=4h 4 (h—3)2" 1 4 2.

4. THE TRANSITION DIGRAPH AND THE NO CYCLE LEMMA

Definition 4.1. Given a multiset S of rubbling moves on G, the transition digraph T'(G, S)
is a directed multigraph whose vertex set is V(G), and each move (v,w — u) in S is
represented by two directed edges (v,u) and (w,u). The transition digraph of a rubbling
sequence s = (s1,...,8,) 18 T(G,s) = T(G, S), where S = {s1,...,s,} is the multiset of
moves in s. Let d:;(Gﬁ) represent the in-degree and d;(as) the out-degree in T'(G, S). We
simply write d~ and d7 if the transition digraph is clear from context.

The transition digraph only depends on the rubbling moves and the graph but not on
the pebble distribution or on the order of the moves. It is possible that T(G, S) = T(G, R)
even if S # R. If T(G,S) = T(G, R) then pg = pg, so the effect of a rubbling sequence on
a pebble function only depends on the transition digraph. In fact we have the following.

Lemma 4.2. If p is a pebble function on G and S is a multiset of rubbling moves then
ps(v) = p(v) +d”(v)/2 = d* (v)
for allv € V(Q).

Proof. The three terms on the right hand side represent the original number of pebbles, the
number of pebbles arrived at v and the number of pebbles moved away from v. ]

We are often interested in the value of qr(v) — ps(v). The function A defined in the
following lemma is going to simplify our notation. The three parameters of A represent
the change in the number of pebbles, the change in the in-degree and the change in the
out-degree. The proof is a trivial calculation.

Lemma 4.3. Define Aa,b,¢) =a+b/2—c. Then
qr(v) — ps(v) = A(q(v) — p(v), d;(G,R) (v) — d;(G,S) (v), d;(Gﬂ) (v) — d;(gs) (v)).

If the rubbling sequence s is executable from a pebble distribution p then we must have
ps > 0. This motivates the following terminology.

Definition 4.4. A multiset S of rubbling moves on G is balanced with a pebble distribution
p at vertex v if pg(v) > 0. We say S is balanced with p if S is balanced with p at all
v € V(Q), that is, pg > 0. We say that a rubbling sequence s is balanced with p if the
multiset of moves in s is balanced with p.
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FIGURE 4.1. Arrows of T(G, Q). The solid arrows belong to C.

S is trivially balanced with a pebble distribution at v if dr}L(G’S) (v) = 0. The balance
condition is necessary but not sufficient for a rubbling sequence to be executable. The
pebble distribution p(u,v,w) = (1,1,1) on the cycle Cs is balanced with s = ((u,u —
v), (v,v — w), (w,w — wu)), but s is not executable. The problem is caused by the cycle in
the transition digraph. The goal of this section is to overcome this difficulty.

Definition 4.5. A multiset of rubbling moves or a rubbling sequence is called acyclic if the
corresponding transition digraph has no directed cycles. Let S be a multiset of rubbling
moves. An acyclic multiset R C S is called an untangling of S if pr > pg.

Proposition 4.6. Every multiset of rubbling moves has an untangling.

Proof. Let S be the multiset of rubbling moves. Suppose that T(G, S) has a directed cycle
C. Let @ be the multiset of elements of S corresponding to the arrows of C, see Figure 4.1.
We show that pr > ps where R =5\ Q. If v € V(C) then there is an a < —1 such that

pR(U) - pS(U) = A(()’ —2,&) =—-1-a=0.
If v e V(G)\ V(C) then there is an a < 0 such that
pr(v) —ps(v) = A(0,0,a) > 0.

We can repeat this process on R until we eliminate all the cycles. This can be finished
in finitely many steps since every step decreases the number of edges in R. The resulting
multiset is an untangling of S. O

Note that a multiset of moves can have several untanglings. Also note that if a pebble
distribution p is balanced with S and R is an untangling of S then pr > ps > 0 and so p is
also balanced with R.

Proposition 4.7. If the pebble distribution p on G is balanced with the acyclic multiset S
of rubbling moves then there is a sequence s of the elements of S such that s is executable
from p.

Proof. First note that if the pebble distribution ¢ on G is balanced with the multiset R of
rubbling moves and ¢t = (v,w — u) € R such that d’;(G,R) (v) =0= d’;(G,R) (w) then t is
executable from ¢. If v # w then ¢(v) > d;(aR)(v) > 1 and q(w) > d;(G’R) (w) > 1. If
v = w then ¢(v) > d*(v) > 2. In both cases ¢ is executable from g.

We define s recursively. Let Ry = S. Since R; is acyclic, we must have a move s; =
(v1,w1 — u1) € Ry such that d;(G Rl)(vl) =0= d;(G R1)(w1)' Then s; is executable from
p. Let R; = Ri—1 \ {si—1}. Then R; is acyclic so we must have a move s; = (v;, w; —
u;) € R; such that d;(G R,)(vi) =0 = d;(G R,)(wi). Then p, .. s, is balanced with
R; since (p(517_”y5i71))Ri = ps > 0 and so s; is executable from p(, . 5_,). The sequence
s=(s1,... ,s|3‘) is an ordering of the elements of S that is executable from p. O

The following is the rubbling version of the No-Cycle Lemma for pebbling (3, 7, §|.
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—(2/2-2)=1 [ —

_(2/2_1):0 ’UG—>’U7< ............................................... [
_(0/2_1):1 Vg oo [ J— )
—(2/2-2)=1 V3 —— V4 —— U5

FIGURE 5.1. Arrows in T(G, S) representing the possible types of rubbling
moves in /. The vertices in the same box are equivalent. The solid arrows
connect equivalent vertices. The calculation on the left shows the change in
>i(3d™(v;) — dt(v;)) after the removal of one of the rubbling moves.

Lemma 4.8. (No Cycle) Let p be a pebble distribution on G and v € V(G). The following
are equivalent.

(1) v is reachable from p.
(2) There is a multiset S of rubbling moves such that S is balanced with p and ps(v) > 1.
(3) There is an acyclic multiset R of rubbling moves such that R is balanced with p and

pr(v) =2 1.
(4) v is reachable from p through an acyclic rubbling sequence.

Proof. 1f v is reachable from p then there is an executable sequence s of rubbling moves.
The multiset S of rubbling moves of s is balanced with p and pg(v) > 1. So (1) implies
(2). If S satisfies (2) then an untangling R of S satisfies (3). Suppose R satisfies (3). By
Proposition 4.7, there is an executable ordering r of the moves of R. This r is acyclic and
v is reachable through r since p,(v) = pr(v) > 1. So (3) implies (4). Finally, (4) clearly
implies (1). O

Corollary 4.9. If a vertex is reachable from a pebble distribution p on G then it is also
reachable by a rubbling sequence in which no move of the form (v,a — wu) is followed by a
move of the form (u,b — v).

5. BASIC RESULTS

It is clear from the definition that for all graphs G we have p(G) < 7(G) where 7 is the
pebbling number. For the pebbling number we have 248m(%) < 7(@G). This is also true for
the rubbling number.

Proposition 5.1. If the graph G has diameter d then 2¢ < p(G).

Proof. Let vg and vy be vertices at distance d. Let p(vg, *) = (m,0) be a pebble distribution
from which vg is reachable through the rubbling sequence s. We now build a quotient
rubbling problem. Let [v] be the equivalence class of v in the partition of the vertices of G
according to their distances from vg. The quotient simple graph H is isomorphic to Py
with leaves [vo] = {vo} and [va]. Let q([v]) = >, ¢,y p(w) for all [v] € V(H) and note that
q([vo],*) = (m,0). The rubbling sequence s induces a multiset R of rubbling moves on H.
We construct this R from the multiset S of rubbling moves of s. Let E be the multiset of
moves of S of the form (v,w — u) where v € [u] or w € [u]. Define R to be the multiset of
moves of the form ([v], [w] — [u]) where (v, w — u) runs through the elements of S\ E.
We show that R is balanced with ¢ . Figure 5.1 shows the possible types of moves in E.
The removal of any of these moves does not decrease the value of 3 - E[v](%d_ (v;) —d ¥ (v;))

and so
= > pop@) = Y psvi) =0

v €[v] v €[v]
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FiGURE 5.2. The Petersen graph P.

since p is balanced with S.
We also have qr([vg]) > 1 since vy is reachable and so pg(vg) > 1. Thus [v4] is reachable
from ¢ and so the result now follows from Proposition 3.3. g

For the pebbling number we have 7(G) > |V(G)|. This inequality does not hold for the
rubbling number as we can see in the next result.

Proposition 5.2. We have the following values for the rubbling number:
a. p(Ky) =2 for n > 2 where K, is the complete graph with n vertices;
b. p(Wy,) =4 for n > 5 where W,, is the wheel with n vertices;

c. p(Kmpn) =4 for m,n > 2 where K, ,, is a complete bipartite graph;
d. p(Qn) =2" for n > 1 where Q,, is the n-dimensional hypercube;

Proof. a. A single pebble is clearly not sufficient but any vertex is reachable with two pebbles
using a single move.

b. If we have 4 pebbles then we can move 2 pebbles to the center using two moves.
Then any other vertex is reachable from the center in a single move. On the other hand
p(Wn) > 2diam(Wn) —92 _ ¢4

c. It is easy to see that from any pebble distribution of size 4 any vertex is reachable in
at most 3 moves. On the other hand we have p(K,,,) > 2dam(Kmnn) = 92 — 4,

d. We know [2] that 7(Q,) = 2". The result now follows from the inequality 2" =
2diam(@n) < p(Q,) < T(Qn) = 27 0

The pebbling numbers of these graphs are 7(K,) = n, 7(W,) = n, (K ) = m+n and
m(Qn) = 2™
Proposition 5.3. The rubbling number of the Petersen graph P is p(P) = 5.

Proof. Consider Figure 5.2. It is easy to see that vertex w is not reachable from the pebble
distribution p(r,s,*) = (3,1,0) and so p(P) > 4. To show that p(P) < 5, assume that a
vertex is not reachable from a pebble distribution p of size 5. Since P is vertex transitive,
we can assume that this vertex is w. Then we must have
t
p(q) Jer(T)J N V)(S) ;rp( )J N VJ(U) ;rp(v)J <1,

otherwise we could make the total number of pebbles at vertices a, b and ¢ more than 2 after
which w is reachable. This forces p(a) = p(b) = p(c) = 0 and two of the remaining terms to
be 0 as well. So by symmetry we can assume that the last term is 1 and all the other terms
are 0. Then we must have p(u) + p(v) = 3 and p(q) + p(r) =1 = p(s) + p(t). A simple case
analysis shows that w is reachable from this p, which is a contradiction. ]

p(a) + p(b) + p(c) + {

We know from [5] that the pebbling number of the Petersen graph is 7(P) = 10.
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6. SQUISHING

The following terms are needed for the rubbling version of the Squishing Lemma of [1].
A thread in a graph is a path containing vertices of degree 2. A pebble distribution is
squished on a thread P if all the pebbles on P are placed on a single vertex of P or on two
adjacent vertices of P. A pebble distribution can be made squished using squishing moves.
A squishing move removes one pebble from each of two vertices on a thread and puts two
pebbles on some vertex between them on the thread.

Lemma 6.1. Let P be a thread in G. If verter x ¢ V(P) is reachable from the pebble
distribution p then x is reachable from p through a rubbling sequence in which there is no
strict rubbling move of the form (v,w — u) where u € V(P).

Proof. Let S be an acyclic multiset of rubbling moves balanced with p such that pg(z) > 1.
Let E be the multiset of strict rubbling moves of S of the form (v, w — u) where u € V(P).

If e = (v,w — u) € E then we have d;(Gvs\{e})(u) = d;(G’S) (u) = 0 since S is acyclic and
so S\ {e} is balanced with p at u. It is clear that pg\(e}(y) > ps(y) for all y € V(G) \ {u}
and so S\ {e} is balanced with p. We still know that S\ {e} is acyclic and pg\ (e} (7) > 1,
so induction shows that R = S\ F is balanced with p.

By Proposition 4.7, there is an ordering r of the elements of R that is executable from p.
Then v is reachable through r since p,(v) = pg(v) > 1. O

The following is the rubbling version of the Squishing Lemma for pebbling [1].

Lemma 6.2. (Squishing) If vertex v is not reachable from a pebble distribution with size n
then there is a pebble distribution r of size n that is squished on each thread not containing
v such that v is not reachable from r either.

Proof. The result follows from the proof of |1, Lemma 4| and Lemma 6.1. 0

7. RuBBLING C},

The Squishing Lemma allows us to find the rubbling numbers of cycles. The pebbling

2k+1

numbers 7(Coy) = 2% 7(Copp1) = 2 L 3 J + 1 were determined in [10, 1].

Proposition 7.1. The rubbling number of an even cycle is p(Cyy) = 2F.
Proof. Tt is well known [10] that 7(Cyy,) = 2%. The first result now follows since

2k — 2diam(02k) < p(C2k) < W(C2k) — 2k.

Proposition 7.2. The rubbling number of an odd cycle is p(Copt1) = L%J + 1.
Proof. Let Co41 be the cycle with consecutive vertices

Tly Tl—15---,L1,U0,Y1,Y25 - - -, Yk, Tk

First we show that p(Cori1) < Lmk;_ﬂ + 1. Let p be a pebble distribution on Cyx1 from
which not every vertex is reachable. It suffices to show that p contains at most L%J
pebbles. By symmetry, we can assume that v is the vertex that is not reachable from p.
By the Squishing Lemma, we can assume that p is squished on the thread with consecutive

vertices Y1, ..., Yk, Thy-- -, L1-
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First we consider the case when all the pebbles are at distance k from v, that is,
p(zk, Yk, *) = (a,b,0). By symmetry, we can assume that 0 < a < b. Then we must
have

(7.1) gJ rh<ok 1,

otherwise we could move {%j pebbles from vertex x; to vertex y; and then reach v from by.

Hence%< L%J+1§2k—1—b+1:2k—bandso
(7.2) a+2b< 2k 1,

We also must have

(7.3) {ﬂ

+a< 21,
;| ras
otherwise we could move Lb_22k71J pebbles from vertex yi to vertex zj after which z1 is

reachable from xj and y; is reachable from gy, and so v would be reachable by the move

(x1,y1 — v). Hence b_22k71 < V’_Q;flJ +1<281 -1 —a+1=21_¢andso

(7.4) b+ 2a < 2F 42kt 1
Adding (7.2) and (7.4) gives
3(a+b) S2k+1_1+2k+2k_1_1:7'2k_1_27

which shows that |[p| =a+b < L%J
Now we consider the case when some pebbles are closer to v than k, that is, p(z;, Tit1, %) =
(b,a,0) with b > 1 and a > 0 for some 1 < i < k. Then we must have L%J +5<20-1<

2k—1 _ 1 otherwise v is reachable. Hence

a a
- osoza- 3]+ [2] o
| atb<a—|g5|+ 5]+
S R A S R T
7.2k 9
= 2.2t _92<¢ {7J
3
Now we show that we can always distribute L%J pebbles so that v is unreachable

and so p(Cogt1) > L”k;_zj +1. Let a = L%J and b = {%J It is easy to check that

k_ gk—1_ — k=1 _
a:{232, kodd’b:{%, k odd {7-2’”—2J:{%, k odd

k__ ok—1__ 3 ok—1__
2—31, k even 52 3 Lk even 3 %, k even

and so a +b = L%J We show that v is unreachable from the pebble distribution
p(xkv Yk *) = (CL, b, 0)

It is easy to see that a and b satisfy (7.2) and (7.4). Suppose that v is reachable from p,
that is, there is an acyclic multiset S of rubbling moves that is balanced with p satisfying
ps(v) > 1. The balance condition at v shows that d~(v) > 2. Hence S must have at least
one of (z1,y1 — v), (1,21 — v) or (y1,y2 — v).

First assume that (z1,y;1 — v) € S. The argument used in the proof of Proposition 3.3
shows that then T'(G, S) has at least 2~! arrows from z; to ;1 and from ¥; to y;_1 for all
i €{2,...,k}. Since S is acyclic, any arrow in T(G, S) pointing to x; must come from yy.
So the balance condition at xj, requires m arrows from yy to zj satisfying 287! < a + L
The balance condition at y; gives 2°~! 4+ m < b. Combining the two inequalities gives
2k 4 2k=1 < b 4 24 which contradicts (7.4).



10 CHRISTOPHER BELFORD AND NANDOR SIEBEN

w

A

FiGure 8.1. The product graph C5 0O Cj.

Next assume that (yi,y1 — v) € S. Then T(G, S) has at least 2° arrows from y; to y;_1
foralli € {2,...,k}. The balance condition at yx requires m arrows from xj, to yj satisfying
28 < b+ 2. We must have d~(z3) = 0, otherwise there is a directed path from v to zy
which is impossible since S is acyclic. The balance condition at zj gives m < a. Combining
the two inequalities gives 2¥*1 < @ + 2b which contradicts (7.2).

Similar argument shows that (z1,21 — v) € S is also impossible. O

8. GRAHAM’S CONJECTURE

The Cartesian product G O H of the graphs G and H has vertex set V(G O H) =
V(G) x V(H) and edge set E(G O H) = {{(vi,w1), (va,w2)} | (v1 = vg and {wq,ws} €
E(H)) or (wy = wy and {vy,v2} € E(G))}.

Graham’s conjecture 7(G O H) < w(G)w(H) generated a lot of interest but it is still
unresolved. We know from [4] that the inequality holds for the optimal pebbling number.

Proposition 8.1. p(C30C3) > 4.

Proof. Using the notation of Figure 8.1, we show that w is not reachable from the pebble
distribution p(u,v,*) = (3,1,0). All the pebbles in p are of distance 2 from w. We have
only 4 pebbles, so the only possibility to reach w is to use pebbling moves that decrease the
distance of the pebbles from w. This is impossible since v and v do not have a common
neighbor vertex that is at distance 1 from w. g

It is not hard to see that p(C5 0 C3) = 5. Note that p(Cs O C3) > 4 = p(C3)p(Cs) so
Graham’s conjecture does not hold for rubbling numbers.

9. OPTIMAL RUBBLING

Optimal pebbling was studied in [10, 9, 4, 1]. In this section we investigate the optimal
rubbling number of certain graphs.

Definition 9.1. The optimal rubbling number pop(G) of a graph G is the minimum number
m for which there is a pebble distribution of size m from which every vertex of G is reachable.

Proposition 9.2. We have the following values for the optimal rubbling number:
a. popt(Kn) =2 for n > 2 where K,, is the complete graph with n vertices;
b. popt(Wy) =2 for n > 5 where W, is the wheel with n vertices;
c. Popt(Kmn) =3 for m,n > 3 where K, , is the complete bipartite graph;
d. popt(P) =4 where P is the Petersen graph.
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FiGURE 9.1. Visualization of a single rolling move with ¢ = 2 and n = 5.
An arrow indicates the transfer of a single pebble

Proof. a. Not every vertex of K, is reachable from a distribution of size 1 since n > 2. On
the other hand any vertex is reachable by a single move from any distribution of size 2.

b. Again, not every vertex of W, is reachable from a distribution of size 1. On the other
hand, every vertex is reachable from the distribution that has 2 pebbles at the center of W,,.

c. Let A and B be the natural partition of the vertex set of K,,,. Let p be a pebble
distribution of size 2. If p places both pebbles on vertices in A then there is a vertex in A
that is not reachable from p. If p places both pebbles on vertices in B then there is a vertex
in B that is not reachable from p. If p places one pebble on a vertex in A and one pebble on
a vertex in B then both A and B have vertices that are unreachable from p. On the other
hand any vertex is reachable in at most two moves from a pebble distribution that places
one pebble on a vertex in A and two pebbles on a vertex in B.

d. Every vertex is reachable from the pebble distribution that has 4 pebbles on any of
the vertices. We show that 3 pebbles are not sufficient to make every vertex reachable using
the notation of Figure 5.2. By symmetry, we can assume that a pebble is placed on vertex
w and a second pebble is placed on w, a or g. A simple case analysis shows that in all three
cases it is impossible to place the third pebble to make each vertex reachable. ]

The optimal pebbling numbers of these graphs are mopi(Kp) = 2, mopt(Wyn) = 2,
Topt (Km,n) = 3 and mop (P) = 4.

Smoothing was used in [1] to study optimal pebbling numbers. A smoothing move removes
two pebbles from a vertex v containing at least three pebbles and adds one pebble at each
neighbor of v. A smoothing move is only allowed if v has at least three pebbles. Rolling
moves serve the same purpose for rubbling as the smoothing moves for pebbling. We want
to restrict the set of possible pebble distributions we need to consider, to determine the
value of the optimal rubbling number.

Definition 9.3. Let vy, ..., v, be the consecutive vertices of a path such that the degree of
vy is 1 and the degrees of vy, vs,...,v,—1 are all 2. The subgraph induced by {vy,...,v,}
is called an arm of the graph. Let p be a pebble distribution such that p(v;) > 2 for some
ie{l,...,n—1}, p(v,) =0, and p(v;) > 1for all j € {1,...,n—1}. A single rolling move
creates a new pebble distribution ¢ by taking one pebble from v; and placing it on v,, that
is q(vi, v, *) = (p(vi) — 1,1, p(x)). See Figure 9.1.

Lemma 9.4. Let q be a pebble distribution on G gotten from the pebble distribution p by
applying a single rolling move from v; to v, on the arm with vertices vi,...,v,. If vertex
u € G 1s reachable from p then w is also reachable from q.

Proof. If u is a vertex of the arm then it is clearly reachable from ¢ so we can assume that
u is not on the arm. Let S be an acyclic multiset of rubbling moves balanced with p such
that ps(u) > 1. Let P be a maximum length directed path in T'(G,S) starting at v; and
not going further than v,. Then P has consecutive vertices v; = vpy,Un, ..., Vp, on the
arm. Let R be the multiset containing the elements of S without the moves corresponding
to the arrows of P. We show that R is balanced with ¢ and so w is reachable from ¢ since
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FI1GURE 9.2. Four possible configurations for T(G, S \ R). The solid arrows
represent the arrows of P.
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Ficure 9.3. Visualization of a double rolling move with ¢ = 2 and n = 5.
An arrow indicates the transfer of a single pebble.

qr(u) = ps(u) > 1. Figure 9.2 shows the possible configurations for T(G, S \ R). If ny =n
then

qr(Ung) = ps(vn,) + A(1,-2,0) = ps(vy,) >0,

while if ny # n then d;(G S)(U”k) = 0 and so

So R is balanced with ¢ at v,,. If d;(G 9) (vny) = 0 then ng = ny, otherwise there is an
a € {—1,—2} such that

qR(U”O) = pS(Uno) + A(_lv 07 CL) > pS(Uno) >0
and so R is balanced with ¢ at v,,. If 0 < j < k then there is an a € {—1, —2} such that

QR(vnj) - pS(vnj) + A(O, _27 a) > pS(vnj) > 0

and so R is balanced with ¢ at vy,. It is clear that R is balanced with ¢ at every other
vertex. O

Definition 9.5. Let vy,...,v, be the consecutive vertices of a path such that the degrees
of vy, v3,...,v,—1 are all 2. Let p be a pebble distribution such that p(vi) = 0 = p(vy,),
p(v;) > 2 for some ¢ € {2,...,n — 1} and p(v;) > 1 for all j € {2,...,n —1}. A double
rolling move creates a new pebble distribution g by taking two pebbles from v; and placing
one pebble on v; and one pebble on v, that is q(v;, v1, vy, %) = (p(v;) — 2,1,1,p(*)). See
Figure 9.3.

Lemma 9.6. Let g be a pebble distribution on G gotten from the pebble distribution p
by applying o double rolling move from wvertex v; to vertices vi and v, on the path with
consecutive vertices vi,...,v,. If verter u € G is reachable from p then u is also reachable
from q.

Proof. If u € {vy,...,v,} then it is clearly reachable from ¢ so we can assume that u ¢
{vi,...,v,}. Let S be an acyclic multiset of rubbling moves balanced with p such that
ps(u) > 1. Let P be a maximum length directed path in T'(G, S) starting at v; and not going
further than vy or v,. Then P has consecutive vertices v; = Upg, Uny, ..., 0n, € {V1,..., 05}
Let R be the multiset containing the elements of S without the moves corresponding to the
arrows of P. An argument similar to the one in the proof of Lemma 9.4 shows that R is
balanced with ¢ at every vertex except maybe at v;. If ng = ng or the arrow (v, vy, ) in P
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FIGURE 9.4. The four possible configurations for T(G,S \ R). The solid
arrows represent the moves corresponding to the arrows of P. The dotted
arrows represent the moves corresponding to the arrows of P.

corresponds to a pebbling move, then R is balanced with ¢ at v; as well. Then u is reachable
from ¢ since qr(u) = ps(u) > 1.

So we can assume that (vp,,vn,) corresponds to a strict rubbling move and that k& = 1.
Let P be a maximum length path in T'(G, R). Since k = 1, the length of P is either 0 or 1.

If this length is 0, then ¢ is balanced with R at v; since d;(G R) (v;) = 0 and we are done. If

the length of P is 1, then let R be the multiset containing the elements of R without the
moves corresponding to the arrows of P. Figure 9.4 shows the possibilities for T(G,S\ R).
It is easy to check that R is balanced with ¢ in each case. Thus w is reachable from ¢ since

qp(u) > ps(u). O

Rolling moves make it possible to find the optimal rubbling number of paths and cycles.

The optimal pebbling number mopy(P,) = [Z:] = Top(Cr) was determined in [10, 1.

Proposition 9.7. The optimal rubbling number of the path is popt () = [242].

Proof. Let P, be the path with consecutive vertices vy, ..., v,. It is clear that every vertex
is reachable from the pebble distribution

1, idisoddori=n
p(vi) =
0, else

which has size [241].

Now assume that there is a pebble distribution of size [ — 1 from which every vertex
of P, is reachable. Let us apply all available rolling moves (single or double). The process
ends in finitely many steps since a rolling move reduces the number of pebbles on vertices
with more than one pebble by at least one. If there is a vertex with more than one pebble
and a vertex with no pebbles, then a rolling move is available. The number of pebbles is not
larger than the number of vertices, so the resulting pebble distribution ¢ has at most one
pebble on each vertex. Every vertex of P, still must be reachable from ¢ by Lemma 9.6.

The only moves executable directly from ¢ are strict rubbling moves. By the No Cycle
Lemma we can assume that every vertex is reachable by a sequence of moves in which a strict
rubbling move (x,y — z) is not followed by a move of the form (z,z — z) or (2,2 — y). So
we can assume that every vertex is reachable through strict rubbling moves. Then we must
have ¢(v1) = 1 = q(v,) otherwise vy or v, is not reachable.

A pigeon hole argument shows that there must be two neighbor vertices u and w such
that ¢(u) = 0 = g(w). To avoid the existence of such u and w, we would need to place

2411

at least L”T_QJ pebbles on the vertices vy, ...,v,_1 but it is easy to see that the (”T‘H} -3
pebbles available for this purpose are not sufficient.
Then neither u nor w is reachable from ¢, which is a contradiction. O

Proposition 9.8. The optimal rubbling number of the cycle is popt(Cr) = [5] for n > 3.
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n 213415
POPt(Bn) 21416
popt(Qn) 213|416
TABLE 1. Rubbling values without a known general formula.

Proof. Let C), be the cycle with consecutive vertices vy,...,v,. It is clear that every vertex
is reachable from the pebble distribution

(07) = 1, 4isodd
P = 0, else

which has size [5].

Now assume that there is a pebble distribution of size [§] —1 from which every vertex of
C,, is reachable. Let us apply all available double rolling moves. The process ends in finitely
many steps since a double rolling move reduces the number of pebbles on vertices with more
than one pebble by two . If there is a vertex with more than one pebble and two vertices
with no pebbles, then a double rolling move is available. The number of pebbles is smaller
than the number of vertices, so the resulting pebble distribution ¢ has at most one pebble
on each vertex. Every vertex of C), still must be reachable from q.

The only moves executable directly from ¢ are strict rubbling moves. The No Cycle
Lemma implies that we can assume that every vertex is reachable through strict rubbling
moves. A pigeon hole argument shows that there must be two neighbor vertices u and
w such that g(u) = 0 = ¢(w). But then neither u nor w is reachable from ¢ which is a
contradiction. O

10. FURTHER QUESTIONS

There are plenty of unanswered questions. We list a few of them.

e What is the optimal rubbling number of the complete binary tree B,, and the hyper-
cube @,. It is fairly easy to get answers for small n with a computer. The known
values are listed in Table 1.

e The cover rubbling number of a graph G is the minimum number m such that
for every pebble distribution p on G with size m there is an executable rubbling
sequence s with pg(v) > 1 for all v € V(G). The cover pebbling number is defined
analogously. Is the cover rubbling number the same as the cover pebbling number
for every graph? The answer might depend on whether the cover pebbling theorem
of [11] can be generalized for rubbling.

e We have 7(P,,) = p(Py), 7(Qrn) = p(Qr) and it is easy to check that 7(L) = 8 = p(L)
where L is the Lemke graph [6]. This is not always the case though. Is it possible to
characterize those graphs for which the pebbling and the rubbling numbers are the
same? When is the rubbling number significantly smaller than the pebbling number?
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