
RUBBLING AND OPTIMAL RUBBLING OF GRAPHSCHRISTOPHER BELFORD AND NÁNDOR SIEBENAbstra
t. A pebbling move on a graph removes two pebbles at a vertex and adds onepebble at an adja
ent vertex. Rubbling is a version of pebbling where an additional moveis allowed. In this new move one pebble is removed at verti
es v and w adja
ent to avertex u and an extra pebble is added at vertex u. A vertex is rea
hable from a pebbledistribution if it is possible to move a pebble to that vertex using rubbling moves. Therubbling number of a graph is the smallest number m needed to guarantee that any vertexis rea
hable from any pebble distribution of m pebbles. The optimal rubbling numberis the smallest number m needed to guarantee a pebble distribution of m pebbles fromwhi
h any vertex is rea
hable. We determine the rubbling and optimal rubbling number ofsome families of graphs and we show that Graham's 
onje
ture does not hold for rubblingnumbers. 1. Introdu
tionGraph pebbling has its origin in number theory. It is a model for the transportation ofresour
es. Starting with a pebble distribution on the verti
es of a simple 
onne
ted graph,a pebbling move removes two pebbles from a vertex and adds one pebble at an adja
entvertex. We 
an think of the pebbles as fuel 
ontainers. Then the loss of the pebble during amove is the 
ost of transportation. A vertex is 
alled rea
hable if a pebble 
an be moved tothat vertex using pebbling moves. There are several questions we 
an ask about pebbling.How many pebbles will guarantee that every vertex is rea
hable, or that all verti
es arerea
hable at the same time? How 
an we pla
e the smallest number of pebbles su
h thatevery vertex is rea
hable? For a 
omprehensive list of referen
es for the extensive literaturesee the survey papers [5, 6℄.In the 
urrent paper we propose the study of an extension of pebbling 
alled rubbling. Inthis version we also allow a move that removes a pebble from the verti
es v and w that areadja
ent to a vertex u, and adds a pebble at vertex u. We �nd rubbling versions of some of thewell known pebbling tools su
h as the transition digraph, the No Cy
le Lemma, squishing andsmoothing. We use these tools to �nd rubbling numbers and optimal rubbling numbers forsome families of graphs in
luding paths, trees, 
omplete graphs, 
omplete bipartite graphs,wheels and 
y
les. We also show that Graham's 
onje
ture does not hold for rubblingnumbers.Our te
hniques are similar to those used in the pebbling literature, but they are not thesame. Some rubbling results require 
ompletely di�erent tools, some require more e�ortsthan their pebbling 
ounterparts. Some graphs have equal pebbling and rubbling numbers,some have a mu
h smaller rubbling number than pebbling number. It seems intriguing tounderstand what graph properties are responsible for these di�eren
es, in parti
ular, whatproperty for
es the pebbling and the rubbling number to be the same. Rubbling also seemsto be 
onne
ted to fra
tional pebbling. Developing the theory of rubbling may introdu
enew tools and deeper understanding of pebbling.Date: 10/11/2008.1991 Mathemati
s Subje
t Classi�
ation. 05C99.Key words and phrases. pebbling, optimal pebbling, rubbling.1



2 CHRISTOPHER BELFORD AND NÁNDOR SIEBEN2. PreliminariesLet G be a simple 
onne
ted graph. We use the notation V (G) for the vertex set and
E(G) for the edge set. A pebble fun
tion on a graph G is a fun
tion p : V (G) → Z where p(v)is the number of pebbles pla
ed at v. A pebble distribution is a nonnegative pebble fun
tion.The size of a pebble distribution p is the total number of pebbles ∑

v∈V (G) p(v). We aregoing to use the notation p(v1, . . . , vn, ∗) = (a1, . . . , an, q(∗)) to indi
ate that p(vi) = ai for
i ∈ {1, . . . , n} and p(w) = q(w) for all w ∈ V (G) \ {v1, . . . , vn}.De�nition 2.1. Consider a pebble fun
tion p on the graph G. If {v, u} ∈ E(G) then thepebbling move (v, v → u) removes two pebbles at vertex v and adds one pebble at vertex uto 
reate a new pebble fun
tion

p(v,v→u)(v, u, ∗) = (p(v) − 2, p(u) + 1, p(∗)).If {w, u} ∈ E(G) and v 6= w then the stri
t rubbling move (v,w → u) removes one pebbleea
h at verti
es v and w and adds one pebble at vertex u to 
reate a new pebble fun
tion
p(v,w→u)(v,w, u, ∗) = (p(v) − 1, p(w) − 1, p(u) + 1, p(∗)).A rubbling move is either a pebbling move or a stri
t rubbling move.Note that the rubbling moves (v,w → u) and (w, v → u) are the same. Also note thatthe resulting pebble fun
tion might not be a pebble distribution even if p is.De�nition 2.2. A rubbling sequen
e is a �nite sequen
e s = (s1, . . . , sk) of rubbling moves.The pebble fun
tion gotten from the pebble fun
tion p after applying the moves in s isdenoted by ps.The 
on
atenation of the rubbling sequen
es r = (r1, . . . , rk) and s = (s1, . . . , sl) isdenoted by rs = (r1, . . . , rk, s1, . . . , sl).De�nition 2.3. A rubbling sequen
e (s1, . . . , sn) is exe
utable from the pebble distribution

p if p(s1,...,si) is nonnegative for all i ∈ {1, . . . , n}. A vertex v of G is rea
hable from thepebble distribution p if there is an exe
utable rubbling sequen
e s su
h that ps(v) ≥ 1. Therubbling number ρ(G) of a graph G is the minimum number m su
h that every vertex of Gis rea
hable from any pebble distribution of size m.A vertex is rea
hable if a pebble 
an be moved to that vertex using rubbling moves witha
tual pebbles without ever running out of pebbles. Changing the order of moves in anexe
utable rubbling sequen
e s may result in a sequen
e r that is no longer exe
utable. Onthe other hand the ordering of the moves has no e�e
t on the resulting pebble fun
tion, thatis, ps = pr. This justi�es the following de�nition.De�nition 2.4. Let S be a multiset of rubbling moves. The pebble fun
tion gotten fromthe pebble fun
tion p after applying the moves in S in any order is denoted by pS.3. Rubbling treesThe pebbling number of trees was found in [2℄. We modify Chung's argument to �ndthe rubbling number of trees. Let v be a vertex of a tree G. Let →v

G be the digraph gottenfrom G by dire
ting the edges towards v. A path partition of →v

G is an ordered partition
P = (P1, . . . , Pm) of the edges of →v

G into dire
ted paths so that pi ≥ pi+1 where pi is thelength of Pi for all i. We 
all (p1, . . . , pm) the length sequen
e of P. A path partition of
G is a path partition of →v

G for some vertex v of G. A path partition P majorizes anotherpath partition P ′ if (p1, . . . , pm) ≥ (p′1, . . . , p
′
m′) in the lexi
ographi
 order. A path partition



RUBBLING AND OPTIMAL RUBBLING OF GRAPHS 3is v-maximum if it majorizes all path partitions of →v

G . A path partition is maximum if itmajorizes all path partitions of G.For k ∈ N and v ∈ V (G) let ρ(G, v, k) be the minimum number m su
h that for everypebble distribution p on G with size m there is an exe
utable rubbling sequen
e s with
ps(v) ≥ k. Note that ρ(G) = max{ρ(G, v, 1) | v ∈ V (G)}. Also note that ρ(G, v, k + 1) − 1is the maximum size of a pebble distribution on G from whi
h at most k pebbles 
an bemoved to vertex v.Proposition 3.1. Let v be a vertex of the tree G and (p1, . . . , pm) be the length sequen
e ofa v-maximum path partition P of →v

G . Then ρ(G, v, k) = k2p1 +
∑m

i=2 2pi−1 − m + 1 for all
k ≥ 1.Proof. We use indu
tion on the number of verti
es of G. The formula 
learly works when
|V (G)| = 1. For the indu
tive step let {v1, . . . , vn} be the set of verti
es adja
ent to v.The removal of v from →v

G 
reates a digraph that is the disjoint union of the dire
ted trees
→v1

G1 , . . . ,
→vn

Gn . The path partition P indu
es a maximum path partition of →vi

Gi with lengthsequen
e (pi,1 − 1, pi,2, . . . , pi,mi
) for all i. With this notation, the multisets {p1, . . . , pm}and {p1,1, . . . , p1,m1

, . . . , pn,1, . . . , pn,mn} are equal. We 
an assume without loss of generalitythat p1 = p1,1. Let ki be the number of pebbles rea
hing vi from Gi. Then
ρ(G, v, k) = max

{
n∑

i=1

(ρ(Gi, vi, ki + 1) − 1) |

⌊
k1 + · · · + kn

2

⌋

< k

}

+ 1and so by the indu
tive hypothesis
ρ(G, v, k) = max







n∑

i=1

(
(ki + 1)2pi,1−1 +

mi∑

j=2

2pi,j−1 − mi

)
| k1 + · · · + kn ≤ 2k − 1






+ 1.Sin
e 2a + 2b ≥ 2a−1 + 2b+1 for all integers satisfying a > b, the maximum o

urs when

k1 = 2k − 1 and k2 = · · · = kn = 0. So
ρ(G, v, k) = 2k2p1,1−1 +

m1∑

j=2

2p1,j−1 − m1 +

n∑

i=2

(2pi,1−1 +

mi∑

j=2

2pi,j−1 − mi) + 1

= k2p1,1 +

m1∑

j=2

2p1,j−1 +

n∑

i=2

mi∑

j=1

2pi,j−1 −

n∑

i=1

mi + 1

= k2p1 +
m∑

i=2

2pi−1 − m + 1.

�Proposition 3.2. Let (p1, . . . , pm) be the length sequen
e of a maximum path partition of
G. Then ρ(G) = 2p1 +

∑m
i=2 2pi−1 − m + 1.Proof. The result follows from the previous proposition and the fa
t that 2a+2b ≥ 2a−1+2b+1for all integers satisfying a > b. �The pebbling number of G is π(G) =

∑m
i=1 2pi − m + 1 by [2℄. The following is animportant spe
ial 
ase of Proposition 3.2.Proposition 3.3. The rubbling number of the path Pn with n verti
es is ρ(Pn) = 2n−1.Note that the pebbling number of Pn is also π(Pn) = 2n−1. As another appli
ation ofProposition 3.2, we 
an �nd the rubbling number of a 
omplete binary tree.



4 CHRISTOPHER BELFORD AND NÁNDOR SIEBENProposition 3.4. The rubbling number of the 
omplete binary tree Bh with height h is
ρ(Bh) = 4h + (h − 3)2h−1 + 2.Proof. The length sequen
e of a maximum path partition is

(2h,

2
︷ ︸︸ ︷

h − 1, h − 1,

22

︷ ︸︸ ︷

h − 2, . . . , h − 2, . . . ,

2h−1

︷ ︸︸ ︷

1, . . . , 1 ).The result now follows from the 
al
ulation below
ρ(Bh) = 22h − 1 + 2(2h−2 − 1) + · · · + 2h−2(2 − 1) + 2h−1(20 − 1) + 1

= 4h + (h − 2)2h−1 − (1 + 2 + · · · + 2h−2) + 1

= 4h + (h − 3)2h−1 + 2.

�4. The transition digraph and the No Cy
le LemmaDe�nition 4.1. Given a multiset S of rubbling moves on G, the transition digraph T (G,S)is a dire
ted multigraph whose vertex set is V (G), and ea
h move (v,w → u) in S isrepresented by two dire
ted edges (v, u) and (w, u). The transition digraph of a rubblingsequen
e s = (s1, . . . , sn) is T (G, s) = T (G,S), where S = {s1, . . . , sn} is the multiset ofmoves in s. Let d−
T (G,S) represent the in-degree and d+

T (G,S) the out-degree in T (G,S). Wesimply write d− and d+ if the transition digraph is 
lear from 
ontext.The transition digraph only depends on the rubbling moves and the graph but not onthe pebble distribution or on the order of the moves. It is possible that T (G,S) = T (G,R)even if S 6= R. If T (G,S) = T (G,R) then pS = pR, so the e�e
t of a rubbling sequen
e ona pebble fun
tion only depends on the transition digraph. In fa
t we have the following.Lemma 4.2. If p is a pebble fun
tion on G and S is a multiset of rubbling moves then
pS(v) = p(v) + d−(v)/2 − d+(v)for all v ∈ V (G).Proof. The three terms on the right hand side represent the original number of pebbles, thenumber of pebbles arrived at v and the number of pebbles moved away from v. �We are often interested in the value of qR(v) − pS(v). The fun
tion ∆ de�ned in thefollowing lemma is going to simplify our notation. The three parameters of ∆ representthe 
hange in the number of pebbles, the 
hange in the in-degree and the 
hange in theout-degree. The proof is a trivial 
al
ulation.Lemma 4.3. De�ne ∆(a, b, c) = a + b/2 − c. Then

qR(v) − pS(v) = ∆(q(v) − p(v), d−
T (G,R)(v) − d−

T (G,S)(v), d+
T (G,R)(v) − d+

T (G,S)(v)).If the rubbling sequen
e s is exe
utable from a pebble distribution p then we must have
ps ≥ 0. This motivates the following terminology.De�nition 4.4. A multiset S of rubbling moves on G is balan
ed with a pebble distribution
p at vertex v if pS(v) ≥ 0. We say S is balan
ed with p if S is balan
ed with p at all
v ∈ V (G), that is, pS ≥ 0. We say that a rubbling sequen
e s is balan
ed with p if themultiset of moves in s is balan
ed with p.
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OOFigure 4.1. Arrows of T (G,Q). The solid arrows belong to C.
S is trivially balan
ed with a pebble distribution at v if d+

T (G,S)(v) = 0. The balan
e
ondition is ne
essary but not su�
ient for a rubbling sequen
e to be exe
utable. Thepebble distribution p(u, v,w) = (1, 1, 1) on the 
y
le C3 is balan
ed with s = ((u, u →
v), (v, v → w), (w,w → u)), but s is not exe
utable. The problem is 
aused by the 
y
le inthe transition digraph. The goal of this se
tion is to over
ome this di�
ulty.De�nition 4.5. A multiset of rubbling moves or a rubbling sequen
e is 
alled a
y
li
 if the
orresponding transition digraph has no dire
ted 
y
les. Let S be a multiset of rubblingmoves. An a
y
li
 multiset R ⊆ S is 
alled an untangling of S if pR ≥ pS.Proposition 4.6. Every multiset of rubbling moves has an untangling.Proof. Let S be the multiset of rubbling moves. Suppose that T (G,S) has a dire
ted 
y
le
C. Let Q be the multiset of elements of S 
orresponding to the arrows of C, see Figure 4.1.We show that pR ≥ pS where R = S \ Q. If v ∈ V (C) then there is an a ≤ −1 su
h that

pR(v) − pS(v) = ∆(0,−2, a) = −1 − a ≥ 0.If v ∈ V (G) \ V (C) then there is an a ≤ 0 su
h that
pR(v) − pS(v) = ∆(0, 0, a) ≥ 0.We 
an repeat this pro
ess on R until we eliminate all the 
y
les. This 
an be �nishedin �nitely many steps sin
e every step de
reases the number of edges in R. The resultingmultiset is an untangling of S. �Note that a multiset of moves 
an have several untanglings. Also note that if a pebbledistribution p is balan
ed with S and R is an untangling of S then pR ≥ pS ≥ 0 and so p isalso balan
ed with R.Proposition 4.7. If the pebble distribution p on G is balan
ed with the a
y
li
 multiset Sof rubbling moves then there is a sequen
e s of the elements of S su
h that s is exe
utablefrom p.Proof. First note that if the pebble distribution q on G is balan
ed with the multiset R ofrubbling moves and t = (v,w → u) ∈ R su
h that d−

T (G,R)(v) = 0 = d−
T (G,R)(w) then t isexe
utable from q. If v 6= w then q(v) ≥ d+

T (G,R)(v) ≥ 1 and q(w) ≥ d+
T (G,R)(w) ≥ 1. If

v = w then q(v) ≥ d+(v) ≥ 2. In both 
ases t is exe
utable from q.We de�ne s re
ursively. Let R1 = S. Sin
e R1 is a
y
li
, we must have a move s1 =
(v1, w1 → u1) ∈ R1 su
h that d−

T (G,R1)(v1) = 0 = d−
T (G,R1)(w1). Then s1 is exe
utable from

p. Let Ri = Ri−1 \ {si−1}. Then Ri is a
y
li
 so we must have a move si = (vi, wi →
ui) ∈ Ri su
h that d−

T (G,Ri)
(vi) = 0 = d−

T (G,Ri)
(wi). Then p(s1,...,si−1) is balan
ed with

Ri sin
e (p(s1,...,si−1))Ri
= pS ≥ 0 and so si is exe
utable from p(s1,...,si−1). The sequen
e

s = (s1, . . . , s|S|) is an ordering of the elements of S that is exe
utable from p. �The following is the rubbling version of the No-Cy
le Lemma for pebbling [3, 7, 8℄.
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−(2/2 − 2) = 1 v1

//
// v2

−(2/2 − 1) = 0 v6 // v7 •oo

−(0/2 − 1) = 1 v8 // • •oo

−(2/2 − 2) = 1 v3 // v4 v5ooFigure 5.1. Arrows in T (G,S) representing the possible types of rubblingmoves in E. The verti
es in the same box are equivalent. The solid arrows
onne
t equivalent verti
es. The 
al
ulation on the left shows the 
hange in
∑

i(
1
2d−(vi) − d+(vi)) after the removal of one of the rubbling moves.Lemma 4.8. (No Cy
le) Let p be a pebble distribution on G and v ∈ V (G). The followingare equivalent.(1) v is rea
hable from p.(2) There is a multiset S of rubbling moves su
h that S is balan
ed with p and pS(v) ≥ 1.(3) There is an a
y
li
 multiset R of rubbling moves su
h that R is balan
ed with p and

pR(v) ≥ 1.(4) v is rea
hable from p through an a
y
li
 rubbling sequen
e.Proof. If v is rea
hable from p then there is an exe
utable sequen
e s of rubbling moves.The multiset S of rubbling moves of s is balan
ed with p and pS(v) ≥ 1. So (1) implies(2). If S satis�es (2) then an untangling R of S satis�es (3). Suppose R satis�es (3). ByProposition 4.7, there is an exe
utable ordering r of the moves of R. This r is a
y
li
 and
v is rea
hable through r sin
e pr(v) = pR(v) ≥ 1. So (3) implies (4). Finally, (4) 
learlyimplies (1). �Corollary 4.9. If a vertex is rea
hable from a pebble distribution p on G then it is alsorea
hable by a rubbling sequen
e in whi
h no move of the form (v, a → u) is followed by amove of the form (u, b → v). 5. Basi
 resultsIt is 
lear from the de�nition that for all graphs G we have ρ(G) ≤ π(G) where π is thepebbling number. For the pebbling number we have 2diam(G) ≤ π(G). This is also true forthe rubbling number.Proposition 5.1. If the graph G has diameter d then 2d ≤ ρ(G).Proof. Let v0 and vd be verti
es at distan
e d. Let p(v0, ∗) = (m, 0) be a pebble distributionfrom whi
h vd is rea
hable through the rubbling sequen
e s. We now build a quotientrubbling problem. Let [v] be the equivalen
e 
lass of v in the partition of the verti
es of Ga

ording to their distan
es from v0. The quotient simple graph H is isomorphi
 to Pd+1with leaves [v0] = {v0} and [vd]. Let q([v]) =

∑

w∈[v] p(w) for all [v] ∈ V (H) and note that
q([v0], ∗) = (m, 0). The rubbling sequen
e s indu
es a multiset R of rubbling moves on H.We 
onstru
t this R from the multiset S of rubbling moves of s. Let E be the multiset ofmoves of S of the form (v,w → u) where v ∈ [u] or w ∈ [u]. De�ne R to be the multiset ofmoves of the form ([v], [w] → [u]) where (v,w → u) runs through the elements of S \ E.We show that R is balan
ed with q . Figure 5.1 shows the possible types of moves in E.The removal of any of these moves does not de
rease the value of ∑

vi∈[v](
1
2d−(vi)− d+(vi))and so

qR([v]) =
∑

vi∈[v]

pS\E(vi) ≥
∑

vi∈[v]

pS(vi) ≥ 0
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Figure 5.2. The Petersen graph P .sin
e p is balan
ed with S.We also have qR([vd]) ≥ 1 sin
e vd is rea
hable and so pS(vd) ≥ 1. Thus [vd] is rea
hablefrom q and so the result now follows from Proposition 3.3. �For the pebbling number we have π(G) ≥ |V (G)|. This inequality does not hold for therubbling number as we 
an see in the next result.Proposition 5.2. We have the following values for the rubbling number:a. ρ(Kn) = 2 for n ≥ 2 where Kn is the 
omplete graph with n verti
es;b. ρ(Wn) = 4 for n ≥ 5 where Wn is the wheel with n verti
es;
. ρ(Km,n) = 4 for m,n ≥ 2 where Km,n is a 
omplete bipartite graph;d. ρ(Qn) = 2n for n ≥ 1 where Qn is the n-dimensional hyper
ube;Proof. a. A single pebble is 
learly not su�
ient but any vertex is rea
hable with two pebblesusing a single move.b. If we have 4 pebbles then we 
an move 2 pebbles to the 
enter using two moves.Then any other vertex is rea
hable from the 
enter in a single move. On the other hand
ρ(Wn) ≥ 2diam(Wn) = 22 = 4.
. It is easy to see that from any pebble distribution of size 4 any vertex is rea
hable inat most 3 moves. On the other hand we have ρ(Km,n) ≥ 2diam(Km,n) = 22 = 4.d. We know [2℄ that π(Qn) = 2n. The result now follows from the inequality 2n =

2diam(Qn) ≤ ρ(Qn) ≤ π(Qn) = 2n. �The pebbling numbers of these graphs are π(Kn) = n, π(Wn) = n, π(Km,n) = m+n and
π(Qn) = 2n.Proposition 5.3. The rubbling number of the Petersen graph P is ρ(P ) = 5.Proof. Consider Figure 5.2. It is easy to see that vertex w is not rea
hable from the pebbledistribution p(r, s, ∗) = (3, 1, 0) and so ρ(P ) > 4. To show that ρ(P ) ≤ 5, assume that avertex is not rea
hable from a pebble distribution p of size 5. Sin
e P is vertex transitive,we 
an assume that this vertex is w. Then we must have

p(a) + p(b) + p(c) +

⌊
p(q) + p(r)

2

⌋

+

⌊
p(s) + p(t)

2

⌋

+

⌊
p(u) + p(v)

2

⌋

≤ 1,otherwise we 
ould make the total number of pebbles at verti
es a, b and c more than 2 afterwhi
h w is rea
hable. This for
es p(a) = p(b) = p(c) = 0 and two of the remaining terms tobe 0 as well. So by symmetry we 
an assume that the last term is 1 and all the other termsare 0. Then we must have p(u) + p(v) = 3 and p(q) + p(r) = 1 = p(s) + p(t). A simple 
aseanalysis shows that w is rea
hable from this p, whi
h is a 
ontradi
tion. �We know from [5℄ that the pebbling number of the Petersen graph is π(P ) = 10.



8 CHRISTOPHER BELFORD AND NÁNDOR SIEBEN6. SquishingThe following terms are needed for the rubbling version of the Squishing Lemma of [1℄.A thread in a graph is a path 
ontaining verti
es of degree 2. A pebble distribution issquished on a thread P if all the pebbles on P are pla
ed on a single vertex of P or on twoadja
ent verti
es of P . A pebble distribution 
an be made squished using squishing moves.A squishing move removes one pebble from ea
h of two verti
es on a thread and puts twopebbles on some vertex between them on the thread.Lemma 6.1. Let P be a thread in G. If vertex x 6∈ V (P ) is rea
hable from the pebbledistribution p then x is rea
hable from p through a rubbling sequen
e in whi
h there is nostri
t rubbling move of the form (v,w → u) where u ∈ V (P ).Proof. Let S be an a
y
li
 multiset of rubbling moves balan
ed with p su
h that pS(x) ≥ 1.Let E be the multiset of stri
t rubbling moves of S of the form (v,w → u) where u ∈ V (P ).If e = (v,w → u) ∈ E then we have d+
T (G,S\{e})(u) = d+

T (G,S)(u) = 0 sin
e S is a
y
li
 andso S \ {e} is balan
ed with p at u. It is 
lear that pS\{e}(y) ≥ pS(y) for all y ∈ V (G) \ {u}and so S \ {e} is balan
ed with p. We still know that S \ {e} is a
y
li
 and pS\{e}(x) ≥ 1,so indu
tion shows that R = S \ E is balan
ed with p.By Proposition 4.7, there is an ordering r of the elements of R that is exe
utable from p.Then v is rea
hable through r sin
e pr(v) = pS(v) ≥ 1. �The following is the rubbling version of the Squishing Lemma for pebbling [1℄.Lemma 6.2. (Squishing) If vertex v is not rea
hable from a pebble distribution with size nthen there is a pebble distribution r of size n that is squished on ea
h thread not 
ontaining
v su
h that v is not rea
hable from r either.Proof. The result follows from the proof of [1, Lemma 4℄ and Lemma 6.1. �7. Rubbling CnThe Squishing Lemma allows us to �nd the rubbling numbers of 
y
les. The pebblingnumbers π(C2k) = 2k π(C2k+1) = 2

⌊
2k+1

3

⌋

+ 1 were determined in [10, 1℄.Proposition 7.1. The rubbling number of an even 
y
le is ρ(C2k) = 2k.Proof. It is well known [10℄ that π(C2k) = 2k. The �rst result now follows sin
e
2k = 2diam(C2k) ≤ ρ(C2k) ≤ π(C2k) = 2k.

�Proposition 7.2. The rubbling number of an odd 
y
le is ρ(C2k+1) = ⌊7·2k−1−2
3 ⌋ + 1.Proof. Let C2k+1 be the 
y
le with 
onse
utive verti
es

xk, xk−1, . . . , x1, v, y1, y2, . . . , yk, xk.First we show that ρ(C2k+1) ≤ ⌊7·2k−1−2
3 ⌋+1. Let p be a pebble distribution on C2k+1 fromwhi
h not every vertex is rea
hable. It su�
es to show that p 
ontains at most ⌊7·2k−1−2

3 ⌋pebbles. By symmetry, we 
an assume that v is the vertex that is not rea
hable from p.By the Squishing Lemma, we 
an assume that p is squished on the thread with 
onse
utiveverti
es y1, . . . , yk, xk, . . . , x1.
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onsider the 
ase when all the pebbles are at distan
e k from v, that is,
p(xk, yk, ∗) = (a, b, 0). By symmetry, we 
an assume that 0 ≤ a ≤ b. Then we musthave(7.1) ⌊a

2

⌋

+ b ≤ 2k − 1,otherwise we 
ould move ⌊a
2⌋ pebbles from vertex xk to vertex yk and then rea
h v from bk.Hen
e a

2 <
⌊

a
2

⌋
+ 1 ≤ 2k − 1 − b + 1 = 2k − b and so(7.2) a + 2b ≤ 2k+1 − 1.We also must have(7.3) ⌊

b − 2k−1

2

⌋

+ a ≤ 2k−1 − 1,otherwise we 
ould move ⌊ b−2k−1

2 ⌋ pebbles from vertex yk to vertex xk after whi
h x1 isrea
hable from xk and y1 is rea
hable from yk, and so v would be rea
hable by the move
(x1, y1 → v). Hen
e b−2k−1

2 <
⌊

b−2k−1

2

⌋

+ 1 ≤ 2k−1 − 1 − a + 1 = 2k−1 − a and so(7.4) b + 2a ≤ 2k + 2k−1 − 1.Adding (7.2) and (7.4) gives
3(a + b) ≤ 2k+1 − 1 + 2k + 2k−1 − 1 = 7 · 2k−1 − 2,whi
h shows that |p| = a + b ≤ ⌊7·2k−1−2

3 ⌋.Now we 
onsider the 
ase when some pebbles are 
loser to v than k, that is, p(xi, xi+1, ∗) =
(b, a, 0) with b ≥ 1 and a ≥ 0 for some 1 ≤ i < k. Then we must have ⌊

a
2

⌋
+ b ≤ 2i − 1 ≤

2k−1 − 1 otherwise v is rea
hable. Hen
e
|p| = a + b ≤ a −

⌊a

2

⌋

+
⌊a

2

⌋

+ b

≤
⌊a

2

⌋

+ 1 + 2k−1 − 1 ≤ 2k−1 − 1 − b + 1 + 2k−1 − 1

= 2 · 2k−1 − 2 <

⌊
7 · 2k−1 − 2

3

⌋

.Now we show that we 
an always distribute ⌊7·2k−1−2
3 ⌋ pebbles so that v is unrea
hableand so ρ(C2k+1) ≥ ⌊7·2k−1−2

3 ⌋ + 1. Let a = ⌊2k

3 ⌋ and b = ⌊5·2k−1

3 ⌋. It is easy to 
he
k that
a =

{
2k−2

3 , k odd
2k−1

3 , k even , b =

{
5·2k−1−2

3 , k odd
5·2k−1−1

3 , k even ,

⌊
7 · 2k−1 − 2

3

⌋

=

{
7·2k−1−4

3 , k odd
7·2k−1−2

3 , k evenand so a + b = ⌊7·2k−1−2
3 ⌋. We show that v is unrea
hable from the pebble distribution

p(xk, yk, ∗) = (a, b, 0).It is easy to see that a and b satisfy (7.2) and (7.4). Suppose that v is rea
hable from p,that is, there is an a
y
li
 multiset S of rubbling moves that is balan
ed with p satisfying
pS(v) ≥ 1. The balan
e 
ondition at v shows that d−(v) ≥ 2. Hen
e S must have at leastone of (x1, y1 → v), (x1, x1 → v) or (y1, y2 → v).First assume that (x1, y1 → v) ∈ S. The argument used in the proof of Proposition 3.3shows that then T (G,S) has at least 2i−1 arrows from xi to xi−1 and from yi to yi−1 for all
i ∈ {2, . . . , k}. Sin
e S is a
y
li
, any arrow in T (G,S) pointing to xk must 
ome from yk.So the balan
e 
ondition at xk requires m arrows from yk to xk satisfying 2k−1 ≤ a + m

2 .The balan
e 
ondition at yk gives 2k−1 + m ≤ b. Combining the two inequalities gives
2k + 2k−1 ≤ b + 2a whi
h 
ontradi
ts (7.4).
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Figure 8.1. The produ
t graph C3 � C3.Next assume that (y1, y1 → v) ∈ S. Then T (G,S) has at least 2i arrows from yi to yi−1for all i ∈ {2, . . . , k}. The balan
e 
ondition at yk requires m arrows from xk to yk satisfying
2k ≤ b + m

2 . We must have d−(xk) = 0, otherwise there is a dire
ted path from v to xkwhi
h is impossible sin
e S is a
y
li
. The balan
e 
ondition at xk gives m ≤ a. Combiningthe two inequalities gives 2k+1 ≤ a + 2b whi
h 
ontradi
ts (7.2).Similar argument shows that (x1, x1 → v) ∈ S is also impossible. �8. Graham's 
onje
tureThe Cartesian produ
t G � H of the graphs G and H has vertex set V (G � H) =
V (G) × V (H) and edge set E(G � H) = {{(v1, w1), (v2, w2)} | (v1 = v2 and {w1, w2} ∈
E(H)) or (w1 = w2 and {v1, v2} ∈ E(G))}.Graham's 
onje
ture π(G � H) ≤ π(G)π(H) generated a lot of interest but it is stillunresolved. We know from [4℄ that the inequality holds for the optimal pebbling number.Proposition 8.1. ρ(C3 � C3) > 4.Proof. Using the notation of Figure 8.1, we show that w is not rea
hable from the pebbledistribution p(u, v, ∗) = (3, 1, 0). All the pebbles in p are of distan
e 2 from w. We haveonly 4 pebbles, so the only possibility to rea
h w is to use pebbling moves that de
rease thedistan
e of the pebbles from w. This is impossible sin
e u and v do not have a 
ommonneighbor vertex that is at distan
e 1 from w. �It is not hard to see that ρ(C3 � C3) = 5. Note that ρ(C3 � C3) > 4 = ρ(C3)ρ(C3) soGraham's 
onje
ture does not hold for rubbling numbers.9. Optimal rubblingOptimal pebbling was studied in [10, 9, 4, 1℄. In this se
tion we investigate the optimalrubbling number of 
ertain graphs.De�nition 9.1. The optimal rubbling number ρopt(G) of a graph G is the minimum number
m for whi
h there is a pebble distribution of size m from whi
h every vertex of G is rea
hable.Proposition 9.2. We have the following values for the optimal rubbling number:a. ρopt(Kn) = 2 for n ≥ 2 where Kn is the 
omplete graph with n verti
es;b. ρopt(Wn) = 2 for n ≥ 5 where Wn is the wheel with n verti
es;
. ρopt(Km,n) = 3 for m,n ≥ 3 where Km,n is the 
omplete bipartite graph;d. ρopt(P ) = 4 where P is the Petersen graph.
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v1 v2 v3 v4 v5 • •

•

LLLLLLLFigure 9.1. Visualization of a single rolling move with i = 2 and n = 5.An arrow indi
ates the transfer of a single pebbleProof. a. Not every vertex of Kn is rea
hable from a distribution of size 1 sin
e n ≥ 2. Onthe other hand any vertex is rea
hable by a single move from any distribution of size 2.b. Again, not every vertex of Wn is rea
hable from a distribution of size 1. On the otherhand, every vertex is rea
hable from the distribution that has 2 pebbles at the 
enter of Wn.
. Let A and B be the natural partition of the vertex set of Km,n. Let p be a pebbledistribution of size 2. If p pla
es both pebbles on verti
es in A then there is a vertex in Athat is not rea
hable from p. If p pla
es both pebbles on verti
es in B then there is a vertexin B that is not rea
hable from p. If p pla
es one pebble on a vertex in A and one pebble ona vertex in B then both A and B have verti
es that are unrea
hable from p. On the otherhand any vertex is rea
hable in at most two moves from a pebble distribution that pla
esone pebble on a vertex in A and two pebbles on a vertex in B.d. Every vertex is rea
hable from the pebble distribution that has 4 pebbles on any ofthe verti
es. We show that 3 pebbles are not su�
ient to make every vertex rea
hable usingthe notation of Figure 5.2. By symmetry, we 
an assume that a pebble is pla
ed on vertex
w and a se
ond pebble is pla
ed on w, a or q. A simple 
ase analysis shows that in all three
ases it is impossible to pla
e the third pebble to make ea
h vertex rea
hable. �The optimal pebbling numbers of these graphs are πopt(Kn) = 2, πopt(Wn) = 2,
πopt(Km,n) = 3 and πopt(P ) = 4.Smoothing was used in [1℄ to study optimal pebbling numbers. A smoothing move removestwo pebbles from a vertex v 
ontaining at least three pebbles and adds one pebble at ea
hneighbor of v. A smoothing move is only allowed if v has at least three pebbles. Rollingmoves serve the same purpose for rubbling as the smoothing moves for pebbling. We wantto restri
t the set of possible pebble distributions we need to 
onsider, to determine thevalue of the optimal rubbling number.De�nition 9.3. Let v1, . . . , vn be the 
onse
utive verti
es of a path su
h that the degree of
v1 is 1 and the degrees of v2, v3, . . . , vn−1 are all 2. The subgraph indu
ed by {v1, . . . , vn}is 
alled an arm of the graph. Let p be a pebble distribution su
h that p(vi) ≥ 2 for some
i ∈ {1, . . . , n− 1}, p(vn) = 0, and p(vj) ≥ 1 for all j ∈ {1, . . . , n− 1}. A single rolling move
reates a new pebble distribution q by taking one pebble from vi and pla
ing it on vn, thatis q(vi, vn, ∗) = (p(vi) − 1, 1, p(∗)). See Figure 9.1.Lemma 9.4. Let q be a pebble distribution on G gotten from the pebble distribution p byapplying a single rolling move from vi to vn on the arm with verti
es v1, . . . , vn. If vertex
u ∈ G is rea
hable from p then u is also rea
hable from q.Proof. If u is a vertex of the arm then it is 
learly rea
hable from q so we 
an assume that
u is not on the arm. Let S be an a
y
li
 multiset of rubbling moves balan
ed with p su
hthat pS(u) ≥ 1. Let P be a maximum length dire
ted path in T (G,S) starting at vi andnot going further than vn. Then P has 
onse
utive verti
es vi = vn0

, vn1
. . . , vnk

on thearm. Let R be the multiset 
ontaining the elements of S without the moves 
orrespondingto the arrows of P . We show that R is balan
ed with q and so u is rea
hable from q sin
e
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vi

//
// vn1

//
// · · ·

//
// vnk vi

//
// · · ·

//
//
vnk−1

// vnk •oo

vi vi // vnk •ooFigure 9.2. Four possible 
on�gurations for T (G,S \ R). The solid arrowsrepresent the arrows of P .
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qqqqqqq
•

LLLLLLLFigure 9.3. Visualization of a double rolling move with i = 2 and n = 5.An arrow indi
ates the transfer of a single pebble.
qR(u) = pS(u) ≥ 1. Figure 9.2 shows the possible 
on�gurations for T (G,S \ R). If nk = nthen

qR(vnk
) = pS(vnk

) + ∆(1,−2, 0) = pS(vnk
) ≥ 0,while if nk 6= n then d+

T (G,S)(vnk
) = 0 and so

qR(vnk
) = pS(vnk

) + ∆(0,−2, 0) ≥ pS(vnk
) − 1 ≥ 0.So R is balan
ed with q at vnk

. If d+
T (G,S)(vn0

) = 0 then n0 = nk, otherwise there is an
a ∈ {−1,−2} su
h that

qR(vn0
) = pS(vn0

) + ∆(−1, 0, a) ≥ pS(vn0
) ≥ 0and so R is balan
ed with q at vn0

. If 0 < j < k then there is an a ∈ {−1,−2} su
h that
qR(vnj

) = pS(vnj
) + ∆(0,−2, a) ≥ pS(vnj

) ≥ 0and so R is balan
ed with q at vnj
. It is 
lear that R is balan
ed with q at every othervertex. �De�nition 9.5. Let v1, . . . , vn be the 
onse
utive verti
es of a path su
h that the degreesof v2, v3, . . . , vn−1 are all 2. Let p be a pebble distribution su
h that p(v1) = 0 = p(vn),

p(vi) ≥ 2 for some i ∈ {2, . . . , n − 1} and p(vj) ≥ 1 for all j ∈ {2, . . . , n − 1}. A doublerolling move 
reates a new pebble distribution q by taking two pebbles from vi and pla
ingone pebble on v1 and one pebble on vn, that is q(vi, v1, vn, ∗) = (p(vi) − 2, 1, 1, p(∗)). SeeFigure 9.3.Lemma 9.6. Let q be a pebble distribution on G gotten from the pebble distribution pby applying a double rolling move from vertex vi to verti
es v1 and vn on the path with
onse
utive verti
es v1, . . . , vn. If vertex u ∈ G is rea
hable from p then u is also rea
hablefrom q.Proof. If u ∈ {v1, . . . , vn} then it is 
learly rea
hable from q so we 
an assume that u 6∈
{v1, . . . , vn}. Let S be an a
y
li
 multiset of rubbling moves balan
ed with p su
h that
pS(u) ≥ 1. Let P be a maximum length dire
ted path in T (G,S) starting at vi and not goingfurther than v1 or vn. Then P has 
onse
utive verti
es vi = vn0

, vn1
, . . . , vnk

∈ {v1, . . . , vn}.Let R be the multiset 
ontaining the elements of S without the moves 
orresponding to thearrows of P . An argument similar to the one in the proof of Lemma 9.4 shows that R isbalan
ed with q at every vertex ex
ept maybe at vi. If nk = n0 or the arrow (vn0
, vn1

) in P
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vi //

// vn1 •oo
oo

• // • vioo // vn1 •oo

vi
//

//
// vn1 •oo • vioo

oo
// vn1 •ooFigure 9.4. The four possible 
on�gurations for T (G,S \ R̃). The solidarrows represent the moves 
orresponding to the arrows of P̃ . The dottedarrows represent the moves 
orresponding to the arrows of P .
orresponds to a pebbling move, then R is balan
ed with q at vi as well. Then u is rea
hablefrom q sin
e qR(u) = pS(u) ≥ 1.So we 
an assume that (vn0

, vn1
) 
orresponds to a stri
t rubbling move and that k = 1.Let P̃ be a maximum length path in T (G,R). Sin
e k = 1, the length of P̃ is either 0 or 1.If this length is 0, then q is balan
ed with R at vi sin
e d+

T (G,R)(vi) = 0 and we are done. Ifthe length of P̃ is 1, then let R̃ be the multiset 
ontaining the elements of R without themoves 
orresponding to the arrows of P̃ . Figure 9.4 shows the possibilities for T (G,S \ R̃).It is easy to 
he
k that R̃ is balan
ed with q in ea
h 
ase. Thus u is rea
hable from q sin
e
qR̃(u) ≥ pS(u). �Rolling moves make it possible to �nd the optimal rubbling number of paths and 
y
les.The optimal pebbling number πopt(Pn) =

⌈
2n
3

⌉
= πopt(Cn) was determined in [10, 1℄.Proposition 9.7. The optimal rubbling number of the path is ρopt(Pn) = ⌈n+1

2 ⌉.Proof. Let Pn be the path with 
onse
utive verti
es v1, . . . , vn. It is 
lear that every vertexis rea
hable from the pebble distribution
p(vi) =

{

1, i is odd or i = n

0, elsewhi
h has size ⌈n+1
2 ⌉.Now assume that there is a pebble distribution of size ⌈n+1

2 ⌉− 1 from whi
h every vertexof Pn is rea
hable. Let us apply all available rolling moves (single or double). The pro
essends in �nitely many steps sin
e a rolling move redu
es the number of pebbles on verti
eswith more than one pebble by at least one. If there is a vertex with more than one pebbleand a vertex with no pebbles, then a rolling move is available. The number of pebbles is notlarger than the number of verti
es, so the resulting pebble distribution q has at most onepebble on ea
h vertex. Every vertex of Pn still must be rea
hable from q by Lemma 9.6.The only moves exe
utable dire
tly from q are stri
t rubbling moves. By the No Cy
leLemma we 
an assume that every vertex is rea
hable by a sequen
e of moves in whi
h a stri
trubbling move (x, y → z) is not followed by a move of the form (z, z → x) or (z, z → y). Sowe 
an assume that every vertex is rea
hable through stri
t rubbling moves. Then we musthave q(v1) = 1 = q(vn) otherwise v1 or vn is not rea
hable.A pigeon hole argument shows that there must be two neighbor verti
es u and w su
hthat q(u) = 0 = q(w). To avoid the existen
e of su
h u and w, we would need to pla
eat least ⌊
n−2

2

⌋ pebbles on the verti
es v2, . . . , vn−1 but it is easy to see that the ⌈n+1
2 ⌉ − 3pebbles available for this purpose are not su�
ient.Then neither u nor w is rea
hable from q, whi
h is a 
ontradi
tion. �Proposition 9.8. The optimal rubbling number of the 
y
le is ρopt(Cn) = ⌈n

2 ⌉ for n ≥ 3.
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n 2 3 4 5

ρopt(Bn) 2 4 6
ρopt(Qn) 2 3 4 6Table 1. Rubbling values without a known general formula.Proof. Let Cn be the 
y
le with 
onse
utive verti
es v1, . . . , vn. It is 
lear that every vertexis rea
hable from the pebble distribution
p(vi) =

{

1, i is odd
0, elsewhi
h has size ⌈n

2 ⌉.Now assume that there is a pebble distribution of size ⌈n
2 ⌉− 1 from whi
h every vertex of

Cn is rea
hable. Let us apply all available double rolling moves. The pro
ess ends in �nitelymany steps sin
e a double rolling move redu
es the number of pebbles on verti
es with morethan one pebble by two . If there is a vertex with more than one pebble and two verti
eswith no pebbles, then a double rolling move is available. The number of pebbles is smallerthan the number of verti
es, so the resulting pebble distribution q has at most one pebbleon ea
h vertex. Every vertex of Cn still must be rea
hable from q.The only moves exe
utable dire
tly from q are stri
t rubbling moves. The No Cy
leLemma implies that we 
an assume that every vertex is rea
hable through stri
t rubblingmoves. A pigeon hole argument shows that there must be two neighbor verti
es u and
w su
h that q(u) = 0 = q(w). But then neither u nor w is rea
hable from q whi
h is a
ontradi
tion. �10. Further questionsThere are plenty of unanswered questions. We list a few of them.

• What is the optimal rubbling number of the 
omplete binary tree Bn and the hyper-
ube Qn. It is fairly easy to get answers for small n with a 
omputer. The knownvalues are listed in Table 1.
• The 
over rubbling number of a graph G is the minimum number m su
h thatfor every pebble distribution p on G with size m there is an exe
utable rubblingsequen
e s with ps(v) ≥ 1 for all v ∈ V (G). The 
over pebbling number is de�nedanalogously. Is the 
over rubbling number the same as the 
over pebbling numberfor every graph? The answer might depend on whether the 
over pebbling theoremof [11℄ 
an be generalized for rubbling.
• We have π(Pn) = ρ(Pn), π(Qn) = ρ(Qn) and it is easy to 
he
k that π(L) = 8 = ρ(L)where L is the Lemke graph [6℄. This is not always the 
ase though. Is it possible to
hara
terize those graphs for whi
h the pebbling and the rubbling numbers are thesame? When is the rubbling number signi�
antly smaller than the pebbling number?Referen
es1. David P. Bunde, Erin W. Chambers, Daniel Cranston, Kevin Milans, and Douglas B. West, Pebblingand optimal pebbling in graphs, J. Graph Theory 57 (2008), no. 3, 215�238.2. Fan R. K. Chung, Pebbling in hyper
ubes, SIAM J. Dis
rete Math. 2 (1989), no. 4, 467�472.3. Betsy Crull, Tammy Cundi�, Paul Feltman, Glenn H. Hurlbert, Lara Pudwell, Zsuzsanna Szaniszlo, andZsolt Tuza, The 
over pebbling number of graphs, Dis
rete Math. 296 (2005), no. 1, 15�23.4. Hung-Lin Fu and Chin-Lin Shiue, The optimal pebbling number of the 
omplete m-ary tree, Dis
reteMath. 222 (2000), no. 1-3, 89�100.
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