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Abstract. An animal is an edge connected set of �nitely many cells of a regular tiling of
the plane. The site-perimeter of an animal is the number of empty cells connected to the
animal by an edge. The minimum site-perimeter with a given cell size is found for animals
on the triangular and hexagonal grid. The formulas are used to show the e�ectiveness of
a simple random strategy in full set animal achievement games.

1. Introduction
A plane polyform is a �gure constructed by joining �nitely many congruent basic polygons

along their edges. If the basic polygons are cells of a regular tiling of the plane by squares,
equilateral triangles or regular hexagons, then the polyform is called a polyomino, polyiamond
or polyhex respectively. An animal is a polyomino, polyiamond or polyhex. We only consider
animals up to congruence and we allow holes in our animals. The number of cells s(A) of
an animal A is called the size of A. The standard reference for polyominoes is [5].

Two cells of a regular tiling are adjacent if they share a common edge. The exterior
boundary E(A) of the animal A is the set of cells outside of A but adjacent to a cell of A.
The site-perimeter of A is the number of cells p(A) := |E(A)| in the exterior boundary. In
this paper we �nd formulas for the minimum site-perimeter of polyiamonds and polyhexes
with given size. The formula for polyominoes was found in [9].

The motivation partly comes from the importance of the site-perimeter in percolation
theory. Similar questions were answered in [7, 8, 10, 11]. The site-perimeter is also used in
[3] as �xed parameter when counting the number of animals. The motivation also comes
from combinatorial game theory.

In a weak animal set (a, b)-achievement game two players alternately mark a and b previ-
ously unmarked cells using their own colors. The �rst player (the maker) tries to mark an
animal in a given set of target animals. The second player (the breaker) tries to prevent the
maker from achieving his goal. Achievement games are studied for example in [1, 2, 4, 6].

If the set of target animals is the set Fs of all animals with size s, then the game is called
full set achievement game. In this game the maker can follow the strategy of marking random
cells adjacent to his earlier marks. We investigate when this strategy can be e�ective. The
answer depends on how small the site-perimeter of animals in Fs can be.

Finding the minimum site-perimeter of an animal with given size is di�cult directly. It
is easier to �nd the maximum size of an animal with given site-perimeter because these
animals are saturated. A cell x ∈ E(A) is admissible to A if p(A∪ x) ≤ p(A). An animal is
saturated if it has no admissible cells.

We characterize the saturated polyiamonds in Section 2. This allows us to �nd the max-
imum size of polyiamonds with given site-perimeter in Section 3. We �nd the minimum
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Figure 2.1. The hexagonal animal T 5
3,2,1 cut from an equilateral triangle

with edge size 5.

Figure 2.2. The empty cell is admissible to any animal containing the full
cells.

site-perimeter of polyiamonds with given size in Section 4. The duality between the trian-
gular and hexagonal tilings allows us to quickly translate all these results to polyhexes in
Section 5. Finally, we study the random neighbor strategy in Section 6.

2. Hexagonal polyiamonds
In this section we characterize the saturated polyiamonds.

De�nition 2.1. The polyiamond T d
a,b,c gotten from the equilateral triangle polyiamond with

edge size d by cutting the corners with edge sizes a, b and c respectively as seen in Figure 2.1
is called a hexagonal polyiamond. We require that a, b and c are nonnegative integers and d
is a positive integer. We also require that a + b, a + c, b + c ≤ d.

A hexagonal polyiamond may have sides with zero length. Since congruent animals are
considered to be the same, the parametrization is not unique. For example T 1

0,0,0 = T 2
1,1,1.

The site-perimeter of a hexagonal polyiamond is equal to its perimeter.
It is easy to see that adding a cell to a hexagonal polyiamond increases the site-perimeter

of the animal and so hexagonal polyiamonds are saturated. Our goal is to show that these
are the only saturated polyiamonds.

Lemma 2.2. If a polyiamond contains the two full cells but not the empty cell as shown in
one of the two pictures of Figure 2.2 then the empty cell is admissible.

Proof. In each case, adding the empty cell to the animal decreases the site perimeter by 1
and may increase it by at most 1. ¤

Roughly speaking, an empty cell at a concave corner of a polyiamond is admissible.

Proposition 2.3. All saturated polyiamonds are hexagonal.

Proof. Let A be a saturated polyiamond. We de�ne an increasing family A1 ⊆ A2 ⊆ · · · ⊆
Ak of hexagonal subsets of A such that Ak = A. Let x1 be an arbitrary cell of A and de�ne
A1 := {x1}. If Ai−1 = A then we are done. Otherwise there is a cell xi ∈ A∩E(Ai−1) since
Ai−1 ⊂ A. By symmetry, we can assume that with the parametrization Ai−1 = T d

a,b,c the
cell xi is connected to the top edge of Ai−1 as shown in Figure 2.3. By Lemma 2.2, the set
Xi of empty cells adjacent to the top edge of Ai−1 must be a subset of A. So the hexagonal
polyiamond Ai := Ai−1 ∪Xi = T d

a−1,b,c is a subset of A. The process ends in �nitely many
steps since A is �nite and s(Ai−1) < s(Ai). ¤
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xi

Figure 2.3. An example of the saturation process after adding cell xi to
Ai−1 = T 6

4,1,2. The empty cells must be included in any saturated animal
containing Ai−1 and xi. Adding these cells to Ai−1 results in Ai = T 6

3,1,2.

x
`

y

z x
`

a. ` contains a cell edge b. ` contains no cell edges

Figure 3.1. The site-perimeter of a polyiamond A can be incremented by
adding either cell x or the cells in {x, y} to A. The site-perimeter of A does
not increase if the full cell is removed from A.

3. Polyiamonds with fixed site-perimeter and maximum size
In this section all animals are polyiamonds. Our purpose is to �nd a formula for σT (p) :=

max{s(A) | p(A) = p}.
Lemma 3.1. For each polyiamond A there is a polyiamond Ã such that A ⊆ Ã and p(Ã) =
p(A) + 1.
Proof. Let ` be the horizontal line that touches A but has no cells of A above it. Such `
exists since A is �nite. If ` contains the edge of a cell of A as shown in Figure 3.1.a then
adding cell x to A increases the site-perimeter of A by 1.

If ` contains none of the cell edges of A as shown in Figure 3.1.b then cell x does not belong
to A. If z 6∈ E(A) then p(A∪{x}) = p(A)+1. If z ∈ E(A) then p(A∪{x, y}) = p(A)+1. ¤

Proposition 3.2. If p(A) = p and s(A) = σT (p) then A is saturated.
Proof. Suppose that A is not saturated. Let Ã := A∪{x} where x is a cell admissible to A.
Then p(Ã) ≤ p. If p(Ã) < p then by Lemma 3.1, we can add cells to Ã until its site-perimeter
reaches p. This is a contradiction since then A cannot have maximum size. ¤

The following convenient formula is the consequence of the choice of the parameters in
De�nition 2.1.
Lemma 3.3. For each hexagonal polyiamond T d

a,b,c we have

p(T d
a,b,c)

2 − 6s(T d
a,b,c) = 3(d− a− b− c)2 + 2((a− b)2 + (a− c)2 + (b− c)2).

Proof. It is easy to see that p(T d
a,b,c) = 3d− a− b− c and s(T d

a,b,c) = d2 − a2 − b2 − c2. The
result follows from these facts after a short calculation. ¤
Proposition 3.4. Let p = 6k + r where 0 ≤ r < 6. Then

σT (p) =





s(T
b p

2
c

k,k,k), r ∈ {0, 3}
s(T

b p
2
c

k−1,k,k), r = 1

s(T
b p

2
c

k,k,k+1), r ∈ {2, 5}
s(T

b p
2
c

k,k+1,k+1), r = 4

.
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Proof. We know that σT (p) = s(T d
a,b,c) for some saturated animal T d

a,b,c with p(T d
a,b,c) = p.

Then d = (p+a+b+c)/3. We see from Lemma 3.3 that the maximum of s(T d
a,b,c) is reached

when
M := p2 − 6s(T d

a,b,c) = 3(d− a− b− c)2 + 2((a− b)2 + (a− c)2 + (b− c)2)

is as small as possible. Note that M ≡6 p2 and M is nonnegative since it is the sum of
squares. We need to consider several cases.

If r = 0 then let a = b = c = k. Then d = 3k and so M = 0. This is clearly the minimum.
If r = 1 then let a = k − 1 and b = c = k. Then d = 3k and so M = 7. Since M ≡6 1,

the only possibly smaller value for M is 1. The equation 1 = 3p + 2q has no nonnegative
integer solution so the minimum of M is 7.

If r = 2 then let a = b = k and c = k +1. Then d = 3k +1 and so M = 4. Since M ≡6 4,
the minimum of M is 4.

If r = 3 then let a = b = c = k. Then d = 3k + 1 and so M = 3. Since M ≡6 3, the
minimum of M is 3.

If r = 4 then let a = k and b = c = k +1. Then d = 3k +2 and so M = 4. Since M ≡6 4,
the minimum of M is 4.

If r = 5 then let a = b = k and c = k +1. Then d = 3k +2 and so M = 7. Since M ≡6 1,
the only possibly smaller value for M is 1. The equation 1 = 3p + 2q has no nonnegative
integer solution so the minimum of M is 7. ¤

Figure 3.2 shows the polyiamond families chosen in the previous theorem.
Proposition 3.5. For p ≥ 3 we have σT (p) = 2bp2/12− p/2c+ p.
Proof. Let p = 6k + r ≥ 3 where 0 ≤ r < 6. Then Proposition 3.4 and the formula
s(T d

a,b,c) = d2 − a2 − b2 − c2 imply that σT (p) = 6k2 + 2rk + |r − 1| − 1. Substituting
p = 6k + r into this formula gives

σT (p)− (2bp2/12− p/2c+ p) = |r − 1| − r − 1− 2br2/12− r/2c.
It is easy to check that this expression is 0 for all r ∈ {0, . . . , 5}. ¤
Proposition 3.6. The function σT is strictly increasing on its domain {3, 4, . . .}.
Proof. First, suppose that p = 6k + r where 0 ≤ r < 5. Then σT (p + 1) − σT (p) =
2k + |r| − |r − 1|. If k = 0 then r ≥ 3 and so 2k + |r| − |r − 1| = 1. If k ≥ 1 then
2k + (|r| − |r − 1|) ≥ 2k − 1 ≥ 1.

Now suppose that p = 6k + 5. Then σT (p + 1)− σT (p) = 6(k + 1)2 − (6k2 + 10k + 3) =
2k + 3 ≥ 1. ¤

4. Polyiamonds with fixed size and minimum site-perimeter
In this section all animals are polyiamonds. Our purpose is to �nd a formula for πT (p) :=

min{p(A) | s(A) = s}.
Lemma 4.1. For all s ≥ 1 we have σT (πT (s)) ≥ s.
Proof. Let p := πT (s). Then there is a polyiamond A with s(A) = s and p(A) = p. Hence
σT (p) ≥ s. ¤
Lemma 4.2. For all p ≥ 3 we have πT (σT (p)) = p.
Proof. Let s := σT (p). Then there is a polyiamond A with p(A) = p and s(A) = s. Hence
πT (s) ≤ p. If q < p then σT (q) < σT (p) = s by Proposition 3.6, and so no polyiamond with
site-perimeter q can have size s. Thus πT (s) ≥ p. ¤
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k 0 1 2 · · ·

r = 0 T 3k
k,k,k · · ·

r = 1 T 3k
k−1,k,k · · ·

r = 2 T 3k+1
k,k,k+1 · · ·

r = 3 T 3k+1
k,k,k · · ·

r = 4 T 3k+2
k,k+1,k+1 · · ·

r = 5 T 3k+2
k,k,k+1 · · ·

Figure 3.2. Maximum size animals with �xed site-perimeter p = 6k + r.
Note that adding an extra layer of cells around an animal creates the next
animal in the row.

Lemma 4.3. For all polyiamond A with s(A) ≥ 2 there is a subset Â ⊂ A such that
s(Â) = s(A)− 1 and p(Â) ≤ p(A).

Proof. We show that if s(A) ≥ 2 then we can remove a cell from A without increasing its
site-perimeter. Let ` be the horizontal line that touches A but has no cells of A above it,
as in the proof of Lemma 3.1. Let w be the leftmost cell of A that touches `. The full cell
in Figure 3.1 represents the two possible positions of w with respect to `. It is easy to see
that, in both cases, cell x is adjacent to w but it is not adjacent to any other cell of A. So
removing w from A decreases the site-perimeter by at least 1 since x falls out of the exterior
boundary. Since A is connected, A must have a cell adjacent to w. So the removal also
increases the site-perimeter by exactly 1 since w becomes a member of the site perimeter.
So Â = A \ {w} satis�es the requirements. ¤

Proposition 4.4. The function πT is increasing.

Proof. For all s ≥ 2 there is a polyiamond A with s(A) = s and p(A) = πT (s). Let
Â be the subset of A guaranteed by the previous Lemma. Then s(Â) = s − 1 and so
πT (s− 1) ≤ p(Â) ≤ p(A) = πT (s). ¤

Proposition 4.5. For all s ≥ 1 we have πT (s) = min{p | σT (p) ≥ s}.
Proof. Since s ≤ σT (πT (s)), q := min{p | σT (p) ≥ s} exists. If q = 3 then clearly s = 1 and
the statement is true, so we can assume that q > 3. Then σT (q − 1) < s ≤ σT (q) and so by
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B B] B[
(
B]

)[ (
B[

)]

Figure 5.1. A polyhex and its various duals.

Lemma 4.2 and Proposition 4.4 we have
q − 1 = πT (σT (q − 1)) ≤ πT (s) ≤ πT (σT (q)) = q.

Equality on the �rst inequality is impossible since q − 1 = πT (s) and Lemma 4.1 imply the
contradiction s > σT (q − 1) = σT (πT (s)) ≥ s. So we must have πT (s) = q. ¤

If p is a statement then we de�ne
[
p
]
to be 1 if p is true and 0 if p is false. For example,[

i = j
]
is the Kronecker delta δi,j . The next result is one of our main theorems.

Theorem 4.6. For all s ≥ 1 we have
πT (s) = d

√
6s e+

[
d
√

6s e ≡6 ±1
]
·
[
d
√

6s e 6= ⌈√
6s + 6

⌉ ]
.

Proof. We know that σT (p) = 2bp2/12 − p/2c + p. It is easy to see that σT (p) = bp2/6 −
p− 1c+ p if the remainder of p is 1 or 5 modulo 6, and σT (p) = bp2/6− pc+ p otherwise.
Let X := {n ∈ N | n ≡6 ±1} and Y := N \X. Then

πT (s) = min{p | σT (p) ≥ s}
= min({p ∈ X | bp2/6− p− 1c+ p ≥ s} ∪ {p ∈ Y | bp2/6− pc+ p ≥ s})
= min({p ∈ X | p2/6− 1 ≥ s} ∪ {p ∈ Y | p2/6 ≥ s})
= min({p ∈ X | p ≥ √

6s + 6} ∪ {p ∈ Y | p ≥
√

6s})
= min({p ∈ X | p ≥ ⌈√

6s + 6
⌉} ∪ {p ∈ Y | p ≥ d

√
6s e}).

So if
⌈√

6s
⌉ ∈ Y or

⌈√
6s + 6

⌉
=

⌈√
6s

⌉
then πT (s) =

⌈√
6s

⌉
. Otherwise πT (s) =⌈√

6s + 6
⌉

=
⌈√

6s
⌉
+1 since it is easy to see that

⌈√
6s + 6

⌉− ⌈√
6s

⌉ ≤ 1 for all s ≥ 1. ¤

5. Polyhexes
The dual of a regular tiling is constructed by drawing line segments connecting the center

points of all pairs of adjacent cells. The dual of a tiling by regular hexagons is a tiling by
equilateral triangles.
De�nition 5.1. Let B be an animal. The outer dual of B is the animal B] built from those
cells of the dual tiling that intersect B. The inner dual of B is the animal B[ built from
those cells of the dual tiling that are inside B.

It is easy to see that the duals of an animal are connected through edges so they are in
fact animals. The duals of a polyhex are polyiamond and the duals of a polyiamond are
polyhexes. Figure 5.1 shows a polyhex and its duals. Note that

(
B]

)[ and
(
B[

)] are not B
in general.

We can �nd the answer to our question about polyhexes from our results about polyia-
monds using this dual connection. The following is an easy consequence of the de�nitions.
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Figure 5.2. The empty cell is admissible to any animal containing the full
cells.

xi xi xi

Bi = H8
3,2,3 Bi = H9

4,3,3 Bi = H9
4,2,4

Figure 5.3. The three possible saturation processes after adding cell xi to
Bi−1 = H8

4,2,3. The empty cells must be included in any saturated animal
containing Bi−1 and xi. Adding these cells to Bi−1 results in Bi.

De�nition 5.2. A polyhex B is called hexagonal if B] is a hexagonal polyiamond. If
B] = T d

a,b,c then B is denoted by Hd
a,b,c.

The reader can easily verify the following result.
Lemma 5.3. If B is a hexagonal polyhex then p(B) = p(B]).

It is easy to see that adding a cell to a hexagonal animal increases the site-perimeter of
the animal and so hexagonal animals are saturated.
Lemma 5.4. If a polyhex contains the two full cells but not the empty cell as shown in
Figure 5.2 then the empty cell is admissible.
Proof. Adding the empty cell to the animal decreases the site perimeter by 1 and may
increase it by at most 1. ¤

Proposition 5.5. All saturated polyhexes are hexagonal.
Proof. The argument uses Lemma 5.4 and is similar to the proof of Proposition 2.3. Fig-
ure 5.3 shows the saturation process after adding cell xi to the hexagonal polyhex Bi−1. ¤

Lemma 5.6. For each polyhex B with size at least 2 there is a polyhex B̃ such that B ⊆ B̃
and p(B̃) = p(B) + 1.
Proof. Let U be the horizontal row of cells that contains the highest cells of B. We need to
consider several cases shown in Figure 5.4. If there are two adjacent cells x, y ∈ B ∪U then
B̃ = B ∪ {u} as shown in case 1.

If there are no such cells then let x be an arbitrary cell in U . Since B has at least 2 cells,
B must have a cell w adjacent to x. Let y ∈ U be the cell adjacent to both x and w. So
we are in the situation shown on the left picture of Figure 5.4. Now we have three cases
depending on cell z. If z ∈ E(B) then B̃ = B ∪ {u, y} as shown in case 2.a. If z ∈ B then
B̃ = B ∪ {u, v} as shown in case 2.b. Finally, if z 6∈ E(B) ∪B then B̃ = B ∪ {y} as shown
in case 2.c. ¤
Proposition 5.7. If p(B) = p and s(B) = σT (p) then B is saturated.
Proof. The proof uses Lemma 5.6. It is essentially the same as that of Proposition 3.2. ¤
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B

u y

u u v

y

y z

u v

w
B̃

x, y, z ∈ U
case 1.
y ∈ B

case 2.a
y 6∈ B

z ∈ E(B)

case 2.b
y 6∈ B
z ∈ B

case 2.c
y 6∈ B

z 6∈ E(B) ∪B

Figure 5.4. Incrementing the site-perimeter of the polyhex B. The picture
on the left shows the cell x and the notation for its neighbors. The pictures
on the right show B and B̃. The known exterior boundary cells are shown
as empty cells. The cells on the top row with letters in them are in B̃ \ B.
They become the smaller full cells on the bottom row.

Proposition 5.8. If B is a hexagonal polyhex then s(B]) = 2s(B) + p(B)− 2.
Proof. We use Euler's formula for the planar graph built from the vertices and edges of the
cells of B]. The number of vertices is v(B]) = s(B)+p(B). The number of faces is f(B]) =
s(B])+1. The number of edges e(B]) satisfy the equation e(B]) = 3s(B])− (e(B])−p(B]))
which gives 2e(B]) = 3s(B])+ p(B]). From here Euler's formula v(B])+ f(B]) = e(B])+2
gives

2s(B) + 2p(B) + 2s(B]) + 2 = 3s(B]) + p(B]) + 4
which simpli�es to the desired equality. ¤
Proposition 5.9. For p ∈ N \ {1, 2, 3, 4, 5, 7} we have σT (p) = 2σH(p) + p− 2.
Proof. Let B be a hexagonal polyhex such that p(B) = p and s(B) = σH(p). Since B is
hexagonal, B] is also hexagonal and so p(B]) = p. Then

σT (p) ≥ s(B]) = 2s(B) + p(B)− 2 = 2σH(p) + p− 2.

For the other direction let A be the hexagonal polyiamond chosen in Proposition 3.4 such
that p(A) = p and s(A) = σT (p). It is easy to see that because of the choice of p the dual
B := A[ satis�es B] = A. Hence p(B) = p and so

σH(p) ≥ s(B) = (s(A)− p(B) + 2)/2 = (σT (p)− p + 2)/2.

¤

Figure 5.5 shows the polyhex families that realize the σH values.
Proposition 5.10. For p ∈ N \ {1, 2, 3, 4, 5, 7} we have σH(p) = bp2/12− p/2c+ 1.
Proof. The proof follows from the calculation

σH(p) = (σT (p)− p + 2)/2 = (2bp2/12− p/2c+ p− p + 2)/2 = bp2/12− p/2c+ 1.

¤

The proof of the following proposition is essentially the same as that of Proposition 4.5.
Proposition 5.11. For all s ≥ 1 we have πH(s) = min{p | σH(p) ≥ s}.
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k 1 2 3 · · ·

r = 0 H3k
k,k,k · · ·

r = 1 H3k
k−1,k,k · · ·

r = 2 H3k+1
k,k,k+1 · · ·

r = 3 H3k+1
k,k,k · · ·

r = 4 H3k+2
k,k+1,k+1 · · ·

r = 5 H3k+2
k,k,k+1 · · ·

Figure 5.5. Maximum size polyhexes with �xed site-perimeter p = 6k + r.
Note that adding an extra layer of cells around an animal creates the next
animal in the row.

The following is one of our main theorems. The proof is an easier version of the the proof
of Theorem 4.6.
Theorem 5.12. For all s ≥ 1 we have πH(s) =

⌈√
12s− 3

⌉
+ 3.

Proof. The result follows form the calculation
πH(s) = min{p | σH(p) ≥ s} = min{p | bp2/12− p/2c+ 1 ≥ s}

= min{p | p2/12− p/2 + 1 ≥ s} = min{p | (p− 3)2 ≥ 12s− 3}
= min{p | p ≥ √

12s− 3 + 3} =
⌈√

12s− 3
⌉

+ 3.

¤

6. The random neighbor strategy
In the full set (a, b)-achievement game the maker can follow the strategy of randomly

marking a cell adjacent to one of his earlier marks. We call this the random neighbor
strategy. If the maker is able to follow this strategy for s turns then he can mark an animal
of size s and win the Fs-achievement game. In this section we use π to denote either πT or
πH .
Proposition 6.1. The random neighbor strategy is successful in the (a, b)-achievement game
for s turns if rb < π(ra) for all r < s.
Proof. Let At ∈ Ft be the animal marked by the maker after t of his marks. The strategy
clearly works in the �rst turn. Suppose that the strategy works for r < s terms. After the
r-th turn the breaker marked rb cells. During the next turn, the exterior perimeter of At
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ST (a, b) b = 1 b = 2 b = 3 b = 4
a = 1 6 2 1 1
a = 2 12 3 2 1
a = 3 18 5 2 2
a = 4 24 6 3 2

SH(a, b) b = 1 b = 2 b = 3 b = 4
a = 1 18 6 3 2
a = 2 30 9 5 3
a = 3 42 12 6 4
a = 4 54 15 8 5

a. polyiamonds b. polyhexes

Table 1. The maximum number of turns for which the random neighbor
strategy is successful in the (a, b)-achievement game. The values are calcu-
lated using the formula of Proposition 6.2 and Table 2.

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
πT (s) 3 4 5 6 6 6 7 8 8 8 9 9 9 10 10 10 11 11
πH(s) 6 8 9 10 11 12 12 13 14 14 15 15 16 16 17 17 18 18

Table 2. Some values for πT and πH . The italic numbers correspond to the
hexagonal animals in Figure 3.2 and Figure 5.5.

satis�es the inequality p(At) ≥ π(t) ≥ π(ra). Since the exterior perimeter is larger than
total number of cells marked by the breaker, the maker can always �nd a cell in the exterior
boundary of At for his next mark. ¤

Note that this result also holds for polyominoes. Let SH(a, b) := max{s | (∀r < s) rb <
πH(ra)}.
Proposition 6.2. Let a and b be positive integers. If a < b(1/

√
3− 1/2) then SH(a, b) = 1

otherwise SH(a, b) = d(6a + 3b +
√

36a2 + 36ab− 3b2)/b2e.
Proof. For a, b, r ∈ N we have

rb < πH(ra) ⇔ rb < d√12ra− 3 e+ 3

⇔ rb <
√

12ra− 3 + 3

⇔ rb < 3 or b2r2 − (6b + 12a)r + 12 < 0.

The roots of b2r2 − (6b + 12a)r + 12 = 0 for r are (6a + 3b±√36a2 + 36ab− 3b2)/b2. It is
easy to see that for a ≥ b(1/

√
3− 1/2) these roots are real, the smaller root is less than 1,

and the larger root is greater than 3/b. ¤
It is possible to develop a formula for the similarly de�ned ST (a, b) in the polyiamond

case. Since the formula for πT is fairly complicated, the result is not worth the e�ort. Table 1
lists some values for ST and SH .
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