
PROOF TREES FOR WEAK ACHIEVEMENT GAMESNÁNDOR SIEBENAbstra
t. Proof number sear
h and threat-spa
e sear
h are su

essful te
hniques for�nding winning strategies in a
hievement games su
h as go-moku. A version of proofnumber sear
h
an be used e�e
tively to analyze weak a
hievement games. In this versionit is su�
ient to
onsider the defensive moves that are involved in the maker's strategyafter null moves. The result of this restri
ted sear
h is a proof tree. The proof tree
anbe translated into the usual proof sequen
e of winning situations used to present winningstrategies for weak a
hievement games. Using this pro
edure, a proof sequen
e
an befound for a handi
ap one strategy for weakly a
hieving Snaky.1. Introdu
tionA polyomino is a �nite set of
ells of the in�nite
hessboard that is
onne
ted throughedges [7℄. Congruent polyominoes are
onsidered to be the same, that is, a polyomino
anbe freely translated, rotated and re�e
ted. In a polyomino weak a
hievement game [6, 9℄,two players alternately mark a previously unmarked
ell using their own
olors. The �rstplayer (the maker) tries to mark a goal polyomino while the se
ond player (the breaker)tries to prevent the maker from a
hieving his goal. If the maker has a strategy for a
hievinga polyomino then the polyomino is
alled a winner, otherwise it is
alled a loser. For allbut one polyomino, it is known whether it is a winner or a loser. The known winners aresubsets of L, Y or Z shown in Figure 1.1. Proof sequen
es des
ribing winning strategies
anbe found for example in [5℄. Pairing strategies for losers
an be found in [13℄.The only unde
ided polyomino is Snaky shown in Figure 1.1. Snaky is believed [6, 4℄ tobe a winner but no winning strategy is known. A pairing strategy is the main tool to showthat a polyomino is a loser. We know from [13℄ that no pairing strategy exists for Snaky. Weknow from [12℄ that Snaky is an edge-to-edge loser, that is, the maker
annot be su

essfulif he always marks next to his earlier marks. This suggests that �nding a possible winningstrategy is hard.A winning strategy with handi
ap k is a strategy for the maker that allows k additionalmarks for the maker in his �rst turn. A handi
ap 2 winning strategy for Snaky was foundin [11℄. Two des
riptions of a handi
ap 1 winning strategy are found in [8, 15℄ but thesedes
riptions do not
ontain the usual proof sequen
e of situations as des
ribed in Se
tion 3.Translating these des
riptions to proof sequen
es seems di�
ult. We present a proof se-quen
e for a handi
ap 1 strategy in Appendix B.A proof sequen
e
an be found by hand but this is very di�
ult if the goal polyominohas more than a few
ells. The main purpose of this paper is to des
ribe a pro
edure that
an be used e�e
tively in a
omputer program to �nd a proof sequen
e. The main tool is aproof tree de�ned in Se
tion 2. First we des
ribe how to
onstru
t a proof sequen
e froma proof tree. This has several steps. In Se
tion 4, we
onvert the proof tree into a set ofsituations. In Se
tion 5, we use a dependen
y digraph to analyze the
onne
tions betweenDate: Sat Sep 6 21:53:44 MST 2008 .1991 Mathemati
s Subje
t Classi�
ation. 91A46, 68P10.Key words and phrases. a
hievement game, polyomino, Snaky, proof tree, proof number sear
h, threatsequen
e. 1

2 NÁNDOR SIEBEN
L Y Z SnakyFigure 1.1. Every known winner is a subset of polyomino L, Y or Z. Snakyis unde
ided.

ww
''OO

{{ww
ww

ww
##GG

G

{{ ""E
E

E
{{ $$J

J

�����
�

""E
EEEE

����� ��
::

Figure 2.1. A proof tree for the size 3 skinny animal. The full squares arethe marks of the maker, the empty squares are the marks of the breaker. Theempty
ells belong to the territory of the position. Solid arrows represent themoves of the maker. Dotted arrows represent the null moves of the breaker.Dashed arrows represent the required other moves of the breaker.the situations. With the analysis we
an greatly redu
e the number of situations needed bythe proof sequen
e. The details of this simpli�
ation pro
ess is found in Se
tion 6.We �nd proof trees using proof number sear
h and threat sear
h. Proof number sear
hand threat-spa
e sear
h are designed for �nding the game-theoreti
al value in game trees.They have been used to solve Conne
t-Four, Qubi
, and Go-Moku [2, 3, 16, 1℄. We adaptthese te
hniques for weak a
hievement games. The main di�eren
e is that the breaker isonly trying to prevent the maker from a
hieving his goal polyomino, she is not trying toa
hieve the goal polyomino on her own. So during the game tree analysis, it is su�
ient to
onsider those moves by the breaker whi
h are later played by the maker. These moves
anbe found by repeatedly using null moves for the breaker until a terminal position is found.2. Proof treesTo show that an animal is a winner, we
an use a proof tree as shown in Figure 2.1. Itis a partial game tree with spe
ial properties as des
ribed below. The moves of the makerare represented by solid arrows, the regular moves of the breaker are represented by dashedarrows. We also
onsider null moves by the breaker, these are represented by dotted arrows.A null move, when the breaker does not mark any
ell, does not happen in real game play.We still allow them in the proof tree. The meaning of a null move is that the a
tual moveof the breaker has no e�e
t on the maker's strategy.The verti
es of a proof tree are positions of the game. A position P
ontains the marks
M(P) of the maker (full squares), the marks B(P) of the breaker (empty squares). A leaf

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 3
ww

''OOO

�� ��
?

?
?

�� ��
?

?

Figure 2.2. A
ondensed version of the proof tree of Figure 2.1. The la
kof solid lines is a reminder of the
ondensation. The territory
ells of thetop position tells us that after the �rst null move of the breaker the makermarked the
ell above his �rst mark.vertex must be a position won by the maker, that is, the marks of the maker must
ontaina polyomino
ongruent to the goal polyomino.A position
reated after a mark of the maker is
alled a maker position, the other positionsare
alled breaker positions. A proof tree shows one adequate move for the maker after ea
hpossible defensive move of the breaker. So a maker position
an have several outgoing arrows,but a breaker position only needs a single (solid) outgoing arrow. We say that position Qis a daughter of position P if there is an arrow in the proof tree from P to Q and that Qis rea
hable from P if there is a dire
ted path from P to Q. The set of daughters of P isdenoted by D(P).The territory T (P) of a position P is the set of
ells marked by the maker after position
P . More pre
isely,

T (P) :=
⋃

{M(Q) \ M(P) | Q is rea
hable from P}.If P is a leaf vertex then T (P) is of
ourse empty. The territory
ells are shown as empty
ells on Figure 2.1.There is an in�nite number of possible defensive moves but not all of them are sensible.The proof tree sele
ts the required ones using the territories. We require that the interse
tionof the territories of the daughters of a maker position is empty, that is
⋂

{T (Q) | Q ∈ D(P)} = ∅for all maker position P . This
ondition guarantees that the proof tree
onsiders all thene
essary moves for the breaker. The maker
an win from any position sin
e the breaker
an never mark a
ell that ruins all possible winning lines for the maker.Proof trees are quite large. We
an
ondense them without losing any information bydeleting the breaker positions as shown in Figure 2.2. The only drawba
k is that
he
kingthe territory requirements is harder. This is not a problem sin
e every breaker position
anbe easily re
overed from its only daughter by repla
ing the new maker mark by a territory
ell. 3. Proof sequen
e of situationsEven a
ondensed proof tree be
omes too large very qui
kly as the goal polyomino grows.Figure 4.1 shows a partial
ondensed proof tree for the polyomino Z. Instead of the prooftree a strategy
an be
aptured by a proof sequen
e (s0, . . . , sn) of situations [5, 14, 18℄. Asituation si = (Csi
, Nsi

) is an ordered pair of disjoint sets of
ells. We think of the
ore
Csi

as a set of
ells marked by the maker and the neighborhood Nsi
as a set of
ells not

4 NÁNDOR SIEBEN
s0
0 s1

1

0

0 s2
2

1

1
1

1 1 1Figure 3.1. A proof sequen
e for the proof tree of Figure 2.2.marked by the breaker. A situation is the part of the playing board that is important forthe maker. A situation does not
ontain any of the breaker's marks. Those marks are notimportant as long as the situation
ontains enough empty
ells in the neighborhood. Justlike polyominoes,
ongruent situations are
onsidered to be the same. If s is a situation thenwe de�ne s \ x := (Cs \ {x}, Ns \ {x}).In the situations of a proof sequen
e, it is always the breaker who is about to mark a
ell.The game progresses from sn towards s0. We require that Cs0
is the goal polyomino and

Ns0
= ∅. This means that the maker already won by marking the
ells in Cs0

and there isno need for any free
ells on the board in Ns0
. For ea
h i ∈ {1, . . . , n} we also require thatif the breaker marks a
ell in Nsi

then the maker
an mark another
ell of Nsi
and rea
h aposition sj
loser to his goal, that is, satisfying j < i. More pre
isely, for all x ∈ Nsi

theremust be an x̃ ∈ Nsi
\ {x} and a j ∈ {0, . . . , i − 1} su
h that

Csj
⊆ Csi

∪ {x̃} and Nsj
⊆ Csi

∪ Nsi
\ {x}.This relationship between si and sj is denoted by si ⊢x sj.Figure 3.1 shows a proof sequen
e that
aptures the winning strategy of the proof treeof Figure 2.2. In the �gure the situations are denoted by sd
i where the upper index d isthe number of required additional marks by the maker until the goal polyomino is rea
hed,assuming optimal defense from the breaker. The numbers inside the neighborhood
ellsdenote the index j of the situation that
an be rea
hed if the breaker marks the given
ell.Note that the maker
an win in 3 turns while the number of
ells in the goal polyomino isalso 3. We
all su
h a strategy e
onomi
al.The situations of the proof sequen
e of Figure 3.1 are simply built from the positions ofFigure 2.2. Given a position P the
orresponding situation is (M(P), T (P)). This workswell if the strategy is e
onomi
al. If the strategy is not e
onomi
al then we
an
onstru
tsimpler situations. 4. From proof tree to situationsThe proof tree of Figure 4.1 is not e
onomi
al. The maker sometimes needs to mark 6
ells even though the goal polyomino Z only has 5. It is
lear that in these positions someof the marks of the maker are not essential to build a
orresponding situation. To de
idewhat is important we introdu
e the notion of essen
e of a position.If P is a leaf position then M(P) must
ontain a
opy of the goal polyomino. An essen
e

E(P) of P
an be
hosen to be one of these
opies. If P is not a leaf position then theessen
e of P is the union of the essen
es of the leaf positions that
an be rea
hed from P ,that is,
E(P) :=

⋃

{E(Q) | Q is a leaf rea
hable from P}.A situation s(P)
orresponding to position P is de�ned as
s(P) := (M(P) ∩ E(P), T (P) ∩ E(P)).Note that if P is a leaf position then s(P) = (G, ∅) where G is the goal polyomino. Sin
ethe essen
e of a leaf position is not unique, we
an get several situations from a position.

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 5

· · ·

· · ·

· · ·

· · ·

· · ·

��

&
&
&
'
'
'
'
'
'
(
(
(
(
(
(
)
)
)
)
)
)
*
*
*
*

��

)

)

*

*

+

+

,

,

-

-

.

��

.
/
0
0

1
2

3
4

4

""

@
C

F

//__

JJ�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

��
7

7
7

7
7

7

//___

��

��
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

��

��
7

7
7

7
7

7
7

��

//___

$$

//____

$$

//___

$$

//___

$$

//___

$$

//____

$$

//___

$$

//___

Figure 4.1. A partial
ondensed proof tree for the polyomino Z. The �gureis rotated by 90◦. Note that this winning strategy is not e
onomi
al.

6 NÁNDOR SIEBEN
s0
0

•
• s1

1
•
•
•

•
•
•

s2
2

ss
kk

mm
qq

�� zz
ss
kk
ddZZ

gg
jj
mm
qq
tt
wwFigure 5.1. A dependen
y digraph of the situations gotten from the proofsequen
e of Figure 3.1. The verti
es in T are denoted by bullets.This is not a drawba
k. If we have more situations then it is easier to �nd a short proofsequen
e.Applying this pro
edure to the maker positions of the proof tree of Figure 4.1, we
anbuild a 31-element set S = {s(P) | P is a maker position}. The situations in S
ould beordered into a proof sequen
e, but we do not need all of them.5. Dependen
y digraph of situationsLet S be the set of situations gotten from the maker positions of a proof tree using thepro
edure des
ribed in Se
tion 4. Our goal is to use as few situations of S as possible tobuild a proof sequen
e. To analyze the
onne
tions between the elements of S, we build adependen
y digraph D.Let T := {s \ x | s ∈ S and x ∈ Ns} be the set of situations with one neighborhood
ell deleted. Note that T is the set of situations that
an be rea
hed from an element of Sapplying a mark by the breaker. The vertex set of the dependen
y digraph is VD := S ∪ T .To de�ne the arrow set, we need to partition S into levels {L0, . . . ,Lm}. The levels are
hosen re
ursively. We let L0 := {(G, ∅)} where G is the goal polyomino. Given L0, . . . ,Li,let Ki := ∪i

j=0Lj and de�ne
Li+1 := {s ∈ S \ Ki | (∀x ∈ Ns)(∃t ∈ Ki) s ⊢x t}.The arrow set of the dependen
y digraph is

ED := {(s, s \ x) | s ∈ S, x ∈ Ns} ∪ {(s \ x, t) | 0 ≤ i < m, s ∈ Li+1, t ∈ Ki and s ⊢x t}.The dependen
y digraph shows the possible routes for the maker to win after ea
h defensivemove of the breaker.Figure 5.1 shows the dependen
y digraph of the situations of the proof sequen
e of Fig-ure 3.1. In this digraph ea
h vertex in T has a single outgoing arrow, so the maker neverhas a
hoi
e. This implies that the proof sequen
e
annot be simpli�ed.Figure 5.2 shows a partial dependen
y digraph of the situations gotten from the proof treeshown in Figure 4.1. Note that there are two ways to
ontinue towards the goal polyominofrom vertex s2
2 \ x. If we delete situation r1, the maker still
an win from s2

2 \ x by pi
king
s0
0 instead of r1. So situation s2

2 does not depend on situation r1. It is possible that othersituations depend on r1 so we
annot delete r1 without looking at the whole dependen
ydigraph.Even if we
an delete a situation, it might not be the best
hoi
e to do so. If we delete asituation, we
ut some of the possible routes towards the goal polyomino, so other situations
ould be
ome indispensable. Our goal is to �nd the largest set of situations that
an bedeleted together. 6. Simplifi
ation of the dependen
y digraphLet S, T , {L0, . . . ,Lm} and D be de�ned as in the previous se
tion. We know that
L0 = {(G, ∅)} = {s0

0} where G is the goal polyomino. We also know that Lm = {sm
n } is

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 7
s0
0•• • •

s1
1

r1

• • • • • •
s2
2 \ y

• •
s2
2 \ x

s2
3

s2
2

y

x
· · ·...L2

L1

L0

99rr
55lllll eeLLiiRRRRR

@@HH ^^ VV

\\ WW RR LL GG BB

1122
55
88
<<xxxxxx
@@���

^^
RR LL

@@

\\:::

NN���������������

PP!!!!!!!!!!!!!!!

UU****************
BB����

Figure 5.2. Partial dependen
y digraph of the situations gotten from theproof tree of Figure 4.1. Levels L0 and L1 are
omplete.
t �

s \ x •

s �

OO

OO �

•

�

OO

OO

� � · · · �

s \ x •
OO

WW/////

OO ??������

� � · · · �

•OO

WW//////

✂

� ✂

rule (2) rule (3) rule (4)Figure 6.1. S
hemati
 rules for simplifying a dependen
y digraph of sit-uations. The bla
k squares represent the indispensable situations. Whitesquares represent unde
ided situations. The bullets represent the situationsin T .also a singleton set
ontaining the initial situation sm
n . The most important property ofthe dependen
y digraph is that every dire
ted path starting at sm

n
an be
ontinued until itrea
hes s0
0. Our goal is to delete as many situations from S as possible while keeping thisproperty alive. Of
ourse if we delete a situation from S then all of its daughters
an bedeleted from T .Some of the situations in S are indispensable, we
olle
t these situations in the set I.Here are the simpli�
ation rules we use to build I and to delete some verti
es or edges.(1) We have s0

0, s
m
n ∈ I. The starting and goal positions are
learly indispensable.(2) Let s ∈ I and s \x ∈ T . If t is the only element of S with (s \x, t) ∈ ED then t ∈ I.If s is indispensable and the maker has only one possible answer t for a defensivemove x of the breaker then t must also be indispensable.(3) If t ∈ I and (s\x, t), (s\x, t1), . . . , (s\x, tk) ∈ ED then (s\x, t1), . . . , (s\x, tk) shouldbe deleted. If the maker
an
ontinue the game through an already indispensablesituation t then he should do so and avoid any other
hoi
es.(4) If a situation in S has no in
oming arrows then the situation should be deleted, sin
e
learly no other situation is dependent on it.

8 NÁNDOR SIEBEN
s0
0 s1

1
0

0

s2
2

0 0
1

0

s2
3

1 1
1

1
1

1

s3
4

2
1
2

1
1 1

2
1

s4
5

3 3
3
3

3
3
3
3

4

3
3
3
3

3
3

s5
6

5

5

5
5
5
5

5
5
5
5
5
5
5

5
5

5
5

5
5
5
5
5
5
5

5
5
5
5

5

5

Figure 6.2. A proof sequen
e for Z.Figure 6.1 shows a s
hemati
 representation of these rules.The use of the simpli�
ation rules help ea
h other, so we use them while any of them isappli
able. If the digraph still has a vertex s \ x ∈ T su
h that s is indispensable and s \ xhas more than one outgoing arrows then further simpli�
ations are possible. Then we �ndone su
h s \ x with the smallest number of outgoing arrows (s \ x, t1), . . . , (s \ x, tn) and wemake one of t1, . . . , tn indispensable arti�
ially and apply the simpli�
ation rules again. Atthis point we have to use a ba
ktra
king algorithm to �nd the smallest dependen
y digraphthat still has the path
ontinuation property.There is still another possibility for simpli�
ation. If (s, s \ x), (s \ x, t1), (s \ x, t2) ∈ EDand we delete t2 from the digraph then it possible that the situation s itself
an be redu
ed.It is possible that a
ore
ell or a neighborhood
ell of s was needed to guarantee thatsituation t2 is rea
hable. Sin
e t2 is no longer an option, these
ells
ould be deleted form s.In theory we
ould
he
k for this possibility every time we delete a situation and re
al
ulatethe dependen
y digraph. This would make the ba
ktra
king quite a bit more
ompli
atedand also mu
h slower. To avoid this di�
ulty we only
he
k for this possibility after theba
ktra
king part is done.After these simpli�
ation pro
esses, the remaining situations in S
an be ordered into aproof sequen
e. Figure 6.2 shows the result of the algorithm applied to the proof tree ofFigure 4.1. Every situation in this proof sequen
e
an be gotten from the positions shown onthe partial proof tree of Figure 4.1. Note that the starting position s5
6 of the proof sequen
eis a redu
ed version of the situation that
orresponds to the initial position of Figure 4.1.7. Proof number sear
hTo �nd a proof tree we use a standard proof number sear
h
ombined with a variationof threat spa
e sear
h [1℄. Proof number sear
h is an algorithm to evaluate an AND/ORtree
ontaining AND-nodes and OR-nodes. A node
an have three possible values: true (1),unknown (1

2) or false (0). The value of node P is denoted by v(P). If the values of theleaf nodes are known, then the value of an internal node is determined by the values of its
hildren using the following truth tables:
∨ 1 1

2 01 1 1 1
1
2 1 1

2
1
20 1 1

2 0 ∧ 1 1
2 01 1 1
2 0

1
2

1
2

1
2 00 0 0 0Note that ∨ takes the maximum and ∧ takes the minimum of the arguments. This is whyOR-nodes and AND-nodes are also
alled MAX-nodes and MIN-nodes.Our AND/OR trees
orrespond to game trees. The AND-nodes
orrespond to makerposition and the OR-nodes to breaker positions. This means that at an AND-node thebreaker
an try several defensive moves. At an OR-node, the maker only needs to �nd onegood move. The value of a node is true if the maker wins from that position. We make the

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 9
1△2

0▽∞ 1▽2

0△∞win 1△1
?

∞△0loss 1△1
??

1△1
?

uul l l l
))RRRR

����
��

�
��

??
??

?

������
��

�
��

??
??

?

Figure 7.1. An AND/OR tree with proof and disproof numbers. The AND-nodes are represented by △, the OR-nodes by ▽. Unknown leaf nodes aredenoted by a question mark. The most proving node is denoted by twoquestion marks. The proof numbers are on the left, the disproof numbers areon the right.value of a node false if the node seems hopeless for the maker. To determine the value ofthe root node, the sear
h expands as many leaf nodes with unknown value as needed.The order of expansion has a great e�e
t on the number of required expansions. We useproof and disproof numbers to pi
k the most proving leaf node to expand. The proof numberis roughly the minimum number of nodes we need to evaluate to
on
lude that the value ofthe node is true. The disproof number is roughly the minimum number of nodes we need toevaluate to
on
lude that the value of the node is false. If P is a leaf node then the proofnumber p(P) and disproof number d(P) of P is de�ned by
p(P) :=











0 if v(P) = 1

∞ if v(P) = 0

i(P) if v(P) = 1
2

, d(P) :=











∞ if v(P) = 1

0 if v(P) = 0

i(P) if v(P) = 1
2

.In the simplest implementation i(P) = 1. If i(P) is de�ned to be the depth of P thenexpanding deeper nodes is more expensive and the sear
h tree be
omes shallower. If theOR-node P̌ and the AND-node P̂ are interior nodes then
p(P̌) := min{p(Q) | Q ∈ D(P̌)}, d(P̌) :=

∑

Q∈D(P̌)

d(Q),

p(P̂) :=
∑

Q∈D(P̂)

p(Q), d(P̂) := min{d(Q) | Q ∈ D(P̂)}.The most proving node
an be found by starting at the root node and following the �rstdaughter with the smallest proof number at OR-nodes, and with the smallest disproof num-ber at AND-nodes. Figure 7.1 shows an example.After expanding the most proving node we update the proof and disproof numbers. Afterthis update we delete all nodes with a 0 disproof number.8. Threat sequen
esLet s be a winning situation and let P be a breaker position, that is, a position when themaker is on the move. If the maker
an mark a
ell and
reate a
opy of s then he
an winfrom that position so the game is de
ided. Now suppose that the maker
an mark a
ell xand almost
reate a position (C,N) that is almost the same as s ex
ept that one
ore
ell
y missing, that is, (C ∪ {y}, N) = s. Then the out
ome is not yet de
ided but he
reated athreat for whi
h the breaker has to respond. To avoid this threat the breaker needs to mark
y or a
ell of N . Using the terminology of [1℄
ell x is a gain
ell and the
ells of N ∪ {y}are
ost
ells of the threat.

10 NÁNDOR SIEBEN
s1

1 //___
s1

1 //___
s0

0 //___
s0

0 //___
s0

0 //

s1

1 //___
s1

1 //Figure 8.1. Two winning threat sequen
es to a
hieve Z. In ea
h positionthe maker is on the move. The labels on the arrows show the name of thesituation of Figure 6.2 used to
reate the threat. Dashed arrows lead todefended threats while solid arrows lead to winning situations.A threat sequen
e is a sequen
e (P0, P1, . . . , Pn) of breaker positions su
h that Pi+1
an begotten from Pi by marking the gain
ell of the threat with the maker's
olor and marking the
ost
ells with the breaker's
olor. The threat sequen
e is
alled winning if the maker
ana
hieve an a
tual winning situation from Pn. Figure 8.1 shows two winning threat sequen
esto a
hieve Z. It is
lear that if there is a winning threat sequen
e starting at P0, the maker
an win from position P0 by marking the gain
ells.It is possible that the maker
an win from a position even though there is no winningthreat sequen
e. Still it is useful to sear
h for threat sequen
es sin
e this is mu
h faster thana full game tree analysis. The sear
h also helps de
iding what moves should be
onsideredduring the proof number sear
h.In our implementation we only
onsider dependent threat sequen
es. A threat sequen
e isdependent if for ea
h i ≥ 1 the threat used to
reate Pi+1 would not exist without the gain
ell of the threat used to
reate Pi. This means that we do not want to experiment withusing available threats in di�erent orders. We only want to follow newly
reated threats.To
reate a threat sequen
e we need to �nd threats and threats need winning situations.We do not have a proof sequen
e, that is why we are interested in threat sequen
es in the�rst pla
e. So we need to
reate winning situations. It is possible to use only the goalpolyomino. This is, in fa
t, what we did to �nd the proof tree of Figure 4.1. For moredi�
ult games we
an
reate winning positions by hand as in [18℄. Another possibility is touse the winning situations of a proof sequen
e for a handi
ap strategy.Threat sequen
es simulate the ta
ti
al thinking of human players. Humans often �ndwinning lines in the game by disregarding the di�
ulties
aused by the marks of the oppo-nent. This is su

essful be
ause ta
ti
s are very important in a
hievement games. The longterm strategy that
omes from experien
e and intuition of human players are simulated bythe proof number sear
h. 9. Node expansionDuring the expansion of nodes in the proof number sear
h we need to
reate possiblemoves. The pro
edure depends on the type of the node.If we expand an OR-node P̌ then we need to sele
t our best
andidates for the maker tomark. Of
ourse if P̌ has a
opy of the goal polyomino marked by the maker then we
anassign v(P̌) := 1 and there is no need for further expansion. Otherwise we
he
k whetherthe depth of the node is beyond our limit. If it is then our sear
h in this dire
tion is hopelessand we assign v(P̌) := 0. If we did not rea
h the depth limit then we sear
h for a winning

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 11
P̂

Q0

��

P̂

Q0 Q1 · · · Qn

��
x1

���
�
� xn

B

B
B

B P̂

Q0 Q1 Q2 Q3

{{
x1

���
�
�

x2

��
.

.
.

x3

##H
H

H
H P̂

Q1 Q2

x1

���
�
�

x2

��
.

.
.

stage 1 stage 2 stage 3 stage 4Figure 9.1. Four stages of the life of an AND-node. A label on a dashedarrow shows the
ell marked by the maker for his move. There are no labelson the dotted arrows sin
e those represent null moves. In stage 3, T (Q0) ∩
T (Q2) = {x1, x3}.threat sequen
e. If we
an �nd one then the maker should mark the gain
ell of the �rstposition of the winning threat sequen
e, so P̌ has only one daughter after the expansion. Ifwe
annot �nd a winning threat sequen
e or the sear
h for it rea
hes our depth limit thenwe need to use some heuristi
s to sele
t a few promising moves. During this sele
tion weuse an evaluation fun
tion that measures the potential of a move to
reate new threats inthe future and we pi
k the moves with the highest values. The evaluation fun
tion �nds thepossible pla
ements of the winning situations on the board with as few missing
ore
ells aspossible. We try to avoid pi
king moves that
reate immediate threats sin
e those moves arealready analyzed by the sear
h for a winning threat sequen
e. We also try to avoid movesthat do not
reate threat moves after a null move of the breaker.If we expand an AND-node P̂ then our main
on
ern is to satisfy the territory interse
tionproperty of proof trees. When we expand P̂ we simply
reate a null move for the breaker.This is shown as stage 1 on Figure 9.1. The resulting position is denoted by Q0. If Q0is expanded further and evaluates to true, then we need to
reate additional daughters

{Q1, . . . , Qn} for P̂ . If T (Q0) = {x1, . . . , xn} then we let M(Qi) := M(P̂) ∪ {xi} and
B(Qi) := B(P̂). This is stage 2. Whenever an additional daughter evaluates to true we
anerase some of the daughters to satisfy

{xi | v(Qi) = 1
2} =

⋂

{T (Qi) | v(Qi) = 1}.This is stage 3. At the end we rea
h stage 4 when ⋂

{T (Qi) | v(Qi) = 1} = ∅ so the valueof P̂ be
omes true and we do not need to
onsider any more daughters. It is possible thatthe interse
tion of the territories is empty even if we delete some of the daughters. Node Q0
an be deleted frequently this way be
ause the other daughters require more sophisti
atedplay from the maker and so their territories are likely smaller. Of
ourse it is possible that adaughter evaluates to false whi
h makes the value of P̂ false as well. Then node P̂ is deletedfrom the tree. 10. The art of finding proof treesIf the goal polyomino is relatively simple then the pro
edure we des
ribed works auto-mati
ally even if the initial set of situations used in the threat sequen
e sear
h and themove sele
tion
ontains only the goal polyomino or a few more situations that
an be easily
reated by hand. For more
ompli
ated goals this is not so easy be
ause the sear
h takestoo long. We need to wat
h how the sear
h progresses and adjust some parameters likethe depth limits, the number of
onsidered moves for the maker, the evaluation fun
tion tosele
t promising moves. O

asionally
utting a few bran
hes that are
learly hopeless byhand speeds up the sear
h signi�
antly.

12 NÁNDOR SIEBENWe need to be more sophisti
ated with the initial set of situations as well. First weuse only a few initial situations and a starting board position that has a large handi
apnumber. This starting board position
ould
ontain for example a
ouple of
ells marked bythe maker. The proof number sear
h �nishes qui
kly and the proof sequen
e gotten fromthe resulting proof tree be
omes the new initial set of situations for the next sear
h.To gain something from this next sear
h we need to make the starting board positionharder to win. This
an be done by adding a few
ells marked by the breaker. The
loserthese
ells are to the a
tion the harder it is to �nish the proof number sear
h and the moreuseful the resulting proof sequen
e. Another way to make the starting board position harderis to de
rease the handi
ap, that is, to add fewer
ells marked by the maker.It would be possible to automate this pro
ess by extending the initial set of situationswith new winning situations dis
overed during the proof number sear
h. Every time thevalue of and AND-node be
omes true, we
ould add the
orresponding situation s(P) to theinitial set of situations. Of
ourse this burden of knowledge slows down the move sele
tionand the threat sequen
e sear
h. Implementing this would perhaps help to settle the fate ofSnaky.
Referen
es[1℄ L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens. Go-moku and threat-spa
e sear
h. (Preprint)http://
iteseer.ist.psu.edu/170657.html.[2℄ L. Vi
tor Allis. Sear
hing for Solutions in Games and Arti�
ial Intelligen
e. PhD thesis, ComputerS
ien
e Department Rijksuniversiteit Limburg, 1994.[3℄ L. Vi
tor Allis, Maarten van der Meulen, and H. Jaap van den Herik. Proof-number sear
h. Artif. Intell.,66(1):91�124, 1994.[4℄ Elwyn R. Berlekamp, John H. Conway, and Ri
hard K. Guy. Winning ways for your mathemati
alplays. Vol. 2. 2nd ed. Nati
k, MA: A K Peters. xvii, 277�473 , 2003.[5℄ Jens-P. Bode and Heiko Harborth. Hexagonal polyomino a
hievement. Dis
rete Math., 212(1�2):5�18,2000. Graph theory (Dörnfeld, 1997).[6℄ Martin Gardner. Mathemati
al games. S
i. Amer., 240:18�26, 1979.[7℄ Solomon G. Golomb. Polyominoes: Puzzles, Patterns, Problem and Pa
kings. Prin
eton UniversityPress, 1965.[8℄ Immanuel Halup
zok and Jan-Christoph S
hlage-Pu
hta. A
hieving snaky. Integers, 7:G02, 28 pp. (ele
-troni
), 2007.[9℄ Frank Harary. A
hievement and avoidan
e games on �nite
on�gurations. J. Re
reational Math.,16(3):182�187, 1983/84.[10℄ Frank Harary. Is Snaky a winner? Geombinatori
s, 2(4):79�82, 1993.[11℄ Frank Harary, Heiko Harborth, and Markus Seemann. Handi
ap a
hievement for polyominoes. In Pro-
eedings of the Thirty-�rst Southeastern International Conferen
e on Combinatori
s, Graph Theory andComputing (Bo
a Raton, FL, 2000), volume 145, pages 65�80, 2000.[12℄ Heiko Harborth and Markus Seemann. Snaky is an edge-to-edge looser. Geombinatori
s, 5(4):132�136,1996.[13℄ Heiko Harborth and Markus Seemann. Snaky is a paving winner. Bull. Inst. Combin. Appl., 19:71�78,1997.[14℄ Heiko Harborth and Markus Seemann. Handi
ap a
hievement for squares. J. Combin. Math. Combin.Comput., 46:47�52, 2003. 15th MCCCC (Las Vegas, NV, 2001).[15℄ Hiro Ito and Hiromitsu Miyagawa. Snaky is a winner with one handi
ap. 8th Helleni
 European Con-feren
e on Computer Mathemati
s and its Appli
ations, 2007.[16℄ M. P. H. Huntjens L. V. Alus, H. J. van den Herik. Go-moku solved by new sear
h te
hniques. Compu-tational Intelligen
e, 12(1):7�23, 1996.[17℄ Nándor Sieben. Snaky is a 41-dimensional winner. Integers, 4:G5, 6 pp. (ele
troni
), 2004.[18℄ Nándor Sieben and Elaina Deabay. Polyomino weak a
hievement games on 3-dimensional re
tangularboards. Dis
rete Mathemati
s, 290:61�78, 2005.

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 13Appendix A. A proof sequen
e for LThe winning strategy for L published in [5℄
ontains 33 situations. We managed to
utthe number of situations in the proof sequen
e into half. The initial set of winning situations
ontained s0
0, s1

2, s1
3, s1

4 and s2
6.

s0
0 s1

1
0

0

s1
2

0

0

s1
3

0 0 s1
4

0

0

s2
5

0

0

0

4

s2
6

3
3

3

3

3
3

s2
7

3
2

3

2

2

3

s3
8

1
1

5

5
5

1
1 1

s3
9

1
1

5

5

5

1
1 1

s4
10

2
4
2

8 2
2

3
2

2
2

s4
11

0
0 9

0

0
0
0

0
0

0

s5
12

5
5
5
5

5
6
5
5
7

5
10

10
6

5
5

5

s5
13

11
11

5
5

5
5

5

5
5
5

11
11

5
5

11

5

s6
14

6

6

6
6
6
6
6
6

6
6
6
6
6
6

6
12

13
6

6
6

6
6
6

6
6

s7
15

14
14
14
14
14

14
14
14
14
14
14
14

14
14
14
14
14
14
14

14
14
14

14
14
14

14
14
14
14
14
14
14

14
14
14
14
14
14

14
14
14
14

Appendix B. A handi
ap 1 proof sequen
e for SnakySnaky has a long history [10, 14, 12, 13, 17, 8, 15℄. It is believed to be a winner. Ourpro
edure found a handi
ap 1 proof sequen
e. For initial set of winning situations we usedthe handi
ap two proof sequen
e of [11℄. The last situation in our proof sequen
e is s10
73, sousing this strategy the maker
an win in 11 turns.

s0
0 s1

1
0

0

s1
2

0

0

s1
3

0
0

s1
4

0

0

s1
5

0

0 s2
6

0

0

1

0 s2
7

5
0
0

0

s2
8

2
2
2

2
2
2

s2
9

2

0
0
0

s2
10

0
0
0 2

s2
11

0
0
0 2

s2
12

2

0
0
0

s2
13

5
3
3

3

5 5

s2
14

4

0

0
0

s2
15

2
2
2

2
2
2

s2
16

2
2
2

2
2
2

s3
17

0 0
0
0

7

0

s3
18

5
5
5

5
9

5
5

10
5
5

s3
19

0 0
0
0

7

0

s3
20

1 1 1
1

1
3

13
1

5

1

s3
21

0

6

0
0
0

0

14 NÁNDOR SIEBEN
s3
22

14

0
0

0
0
0

s3
23

14

0
0

0

0
0

s3
24

5
5
5

5
5

10
10

10

s3
25

10
10
10

10
10
10

10
10

10
10

s3
26

11
12
12
12

11

16

16
11
11
11
11

s3
27

0
0
0

0
0
0

0

15 s3
28

8
8
8
8

16
16
16

8

16

8
15
15
15

s3
29

15
16
16
8
8
8
8
8

15

8

15
15
15

s3
30

8
16
16
8
8
8
8

8

8

8
15
15
8

s4
31

0

0

21

0
0
0

0
0

s4
32

0 0
0
0

0

17

0 0

s4
33

0
0
0

18

0
0
0

0
0

0
0
0

s4
34

5 5
5
5

22
17

9

5
5
5

5 5

s4
35

21

21

21

21
21

21
21
21

21

21
21
21

21
21

s4
36

8 8

9
9
9

8
19

10
10
10

8

s4
37

10 10
10
10
10

23
23
23

23
15

10 10

s4
38

0
0
0

29

0
0

0

0
0
0
0

0
0
0

s5
39

0
0

0
0

0
0
0

31
0

0

s5
40

0
0

0
0

0
0
0

33 0
0

0
0

0
0

s5
41

0 0
0
0

0

32
0
0

0 0

s5
42

0 0 0
0

0

32

0
0
0

0

s5
43

5 5

5
5
5

5
5
5

5
5
5

37
37

37

5 5

s5
44

5 5 5
5
5

5
5
5

34
14

5
5
24

5
5 5

s5
45

5 5

5
5
5

5
5
5

5
5
5

36
14

5
5
25

5

s5
46

0
0
0

0
0
0

38

0

0
0
0

0
0
0

0

0

s6
47

0

0

0
0
0

0
0
0

0
0
0 46

0
0
0

0
0

0

s6
48

21 21

20

41
21

21
21

21
21
21

20
21

41

20
20
20
20
20

20
20
20

s6
49

8
8

8
8

9
9
9
8

8
39

10
10
10 8

8

s6
50

8
8

8
8

9
9
9
8

8
40

10
10
10

8
8

8
8

8
8

s6
51

5
5

5
5

5
5
5

40

16
16

5
5
5

5
5

5
5

5
5

s6
52

8
8

8
8

15
15
15
8

40
16
16
16

8
8
8

8
8

8
8

8
8

s6
53

8

8

8
8
8

8
8
8

15
15
15

46

16
16
16

8
8
8

8
8 8

PROOF TREES FOR WEAK ACHIEVEMENT GAMES 15
s6
54

8

8

8
8
8

8
8
8

16
16
16
8
8
8
8

46
15
15
15
8

8
8 8

s6
55

43
43
43
43

43
43
43
44

43
43
43
43
45
44
44
43

43
44
44

44
43
43

43
43
43

43
45
43
43
43

45
43

43
43

s6
56

8

8

8
8
8

8
8
8

15
15
15

46

16
16
16

8
8
8

8
8 8

s6
57

8

8

8
8
8

8
8
8

16
16
16

8
8
8

46

15
15
15

8
8 8

s7
58

24

24

24
24
24

24
24
24

24

42
35
35

35
35
47

48
48

41
24
24

24
24
24
24
24
24

24
24
24
24
24

24
24
24

s7
59

5
5

5
5

5
5
5
5

5
5
5

49
14

5
5
13 5

5

s7
60

5
5

5
5

5
5
5
5

5
5
5

5
5
5

50
14

5
5
25

5
5

5
5

5
5

s7
61

14
14

14
14

14
14
14
14

14
14
14

14
14

52

28
28
28

51
14
14
14

14
14

14
14

14
14

s7
62

14

14

14
14
14

14
14
14

14
14
14

14
14
14
14

14
14

53

57
57
57

28
14
14

14
14

14

s7
63

14
14

14
14

14
14
14
14
14

14
14

52
14

26
26
26

28
14
14
14
14

14
14

14
14

14
14

s7
64

26 26
26

26
27
30
30
28
26
26
26
26

26
27

53
28

26

27
27
27
27
27

26
26
26

26
26
26

26

26

s7
65

28

28

28
28
28
28

28
28
28
28

28
28
28
28
28
51
51
30
28

28
51

54
28

28
29
29
29

28
28
28

28
28

28
28

28
28

s7
66

28
28
28
28

28
28
28
28

28
28
28
28

28
28
28
28
28
53
53
30
28

28
53

54
28

28
29
29
29
28

28
28
28

28
28
28

28
28

s7
67

28

28

28
28
28

28
28
28
28

28
57
57
28
28
30
30
30
28

28
57

53
28

28
53
53
29
28
28
28

28
28
28
28

28
28
28

28

28

s8
68

43

43

43
43
43

43
43

43
43
43

43
45

43
43
43

45
58
45
43

43
45
45

45
43
43

43
43
43

43
43
43
45
43
43
43

43
43
43
45
43

43
43
43

s8
69

43
43

43
43

43
43

59
43

43
43

60
43

43
43
45

45
45
59

45
45
45

45
45
45
43
59
59
59
43

43
43
43
59

43
43
43
59

s9
70

55

55

55

55

55
55
55
62
61
61
55
55
55

55
55
55
62
61
61
55
55

55
55
55
55
62
61
63
63
63
55

55
55
69

68
68
61

55
64
64
65

65
69
69
62
55

61
62
62

61
61
61
61

55
62

61
61
55

55
62

61
61
55

s10
71

66

66
66
66
66

66

66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66

66
67
67
66
66
66
66
67
67
66

66
70
70

70
70
66

66
67
67
66
66
66
66
67
67
66

66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66
66
66

66
66
66
66
66
66
66
66

E-mail address: nandor.sieben�nau.eduCurrent address: Department of Mathemati
s and Statisti
s, Northern Arizona University, Flagsta� AZ86011-5717, USA

