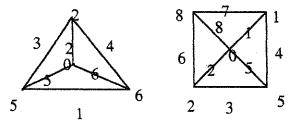
Edge-Graceful Graphs Linda Tsai

Graceful graphs

Let G be an undirected graph with no loops or multiple edges, p vertices, and q edges. The vertices of G are given by $\{v_1, v_2, ..., v_p\}$ and are labelled with distinct elements of $\{0, 1, 2, ..., q\}$. Suppose an edge has end vertices v_i & v_j , where v_i has label a_i & v_j has label a_j . Then, the label of the edge is $|a_i - a_j|$. If the vertices of G may be labeled so that these induced edge labels are distinct & form the set $\{1, 2, ..., q\}$, then G is said to be graceful. (Foreman, p. 1)

Figure 1. Examples of graceful graphs



Some of the results on graceful graphs are that trees with fewer than 5 end vertices, trees with fewer than 16 edges, and complete bipartite graphs are graceful. (Foreman, p. 7)

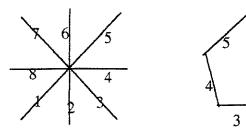
Edge-graceful graphs originated from graceful graphs. In fact, edge-gracefulness is a reversal of gracefulness. It involves labeling edges, rather than vertices, with an induced numbering consisting of sums of edge-labels, rather than differences of vertex labels.

Edge-graceful graphs

Edge-graceful graphs were defined by Sheng-Ping Lo in 1985. A graph G (p,q) is edge-graceful if there exists a bijective numbering of the edge set $\{e_i\}$ of G by $\{1, 2, ..., q\}$ so that the induced vertex labeling given by

label vertex $v = \Sigma$ label (e_i) (mod p) $(e_i \text{ incident } w/v)$ is a bijection onto the set $\{0, 1, 2, ..., p-1\}$. (Foreman, p. 29)

Figure 2. Examples of edge-graceful graphs



(Foreman, p. 30)

Research has shown that star graphs, odd unicyclic graphs, regular complete k-partite graphs $(K_{n_1,n_2},...,n_k)$, and complete graphs are some of the classes of graphs that are edge-graceful. A star graph is a graph with a vertex in the center that is adjacent to all other vertices. A graph G is k-partite, k>1, if it is possible to partition the set of vertices V(G) into k subsets $V_1, V_2, ..., V_n$ (partite sets) such that every element of of the set of edges E(G) joins a vertex of V_i to a vertex of V_j where $i \neq j$. A graph is regular when $n_1 = n_2 = ... = n_k$. A complete graph, K_p , has p vertices and an edge between any pair of vertices.

Thm. (Lo, 1985) If a graph G of p nodes and q edges is edge-graceful, then $p \mid (q^2 + q - p(p-1)/2)$.

Proof: Since G is edge-graceful, we have an edge-graceful labeling. Thus

$$2(1 + 2 + ... + q) \equiv 0 + 1 + 2 + ... + (p-1) \pmod{p}$$

 $q^2 + q \equiv p (p-1)/2 \pmod{p}$

Therefore, $p \mid (q^2 + q - p(p-1)/2)$. .

Thm. (Lo, 1985) Kp is edge-graceful for p odd.

Thm. (Lee & Seah, 1990) The regular complete k-partite graph $K_{n1,n2,...,nk}$ is edge-graceful if and only if n is odd, and k is either odd or a multiple of 4.

Partial Proof: By Lo's Thm, if a graph is edge-graceful, then $p \mid q^2 + q - p(p-1)/2$. Assume that $K_{n_1, n_2, ..., n_k}$ is edge-graceful. For $K_{n_1, n_2, ..., n_k}$, there are k partite sets of vertices, each with n vertices, so p = nk. Every vertex has degree of n(k-1) and there are nk vertices. The number of edges is obtained by multiplying the

degree for each vertex by the number of vertices and dividing by 2 since each edge will be counted twice, once on each vertex, so $q = n^2 k(k-1)/2$.

So, $nk \mid (n^2k(k-1)/2)^2 + n^2k(k-1)/2$ - nk(nk-1)/2 must be true. When the right side is simplified and divided by nk, $n^3k(k-1)^2/4$ - (n-1)/2 is obtained, and it must be $\in \mathbb{Z}$.

Case 1. n even

 \rightarrow n³k(k-1)² even & divisible by 4 \rightarrow (n-1)/2 \in Z \rightarrow (n-1) even \rightarrow n odd $\Rightarrow \Leftarrow$ the original assumption.

Case 2. n odd

$$\rightarrow (n-1)/2 \in \mathbb{Z} \rightarrow n^3 k(k-1)^2/4 \in \mathbb{Z}$$

 n^3 odd

let k be even \rightarrow $(k-1)^2$ odd \rightarrow $n^3k(k-1)^2/4$ is divisible by 4 if k is divisible by 4

let k be odd \rightarrow (k-1)2 is even and divisible by 4.

Therefore, n must be odd, and k must be odd or a multiple of 4. \diamond

What I have been working on

I have been trying to determine whether certain classes of graphs are edge-graceful or not edge-graceful. I often use Lo's theorem that states if edge-graceful, then $p \mid q^2 + q - p(p-1)/2$.

I also use a variation derived from $p \mid q^2 + q - p(p-1)/2$: $p(p+m) = 2(q^2+q)$ where m is odd.

$$pa = q2 + q - p(p-1)/2$$
, where $a \in \mathbb{Z}$
 $pa + p(p-1)/2 = q2 + q$
 $2ap + p(p-1) = 2 (q2 + q)$
 $2ap + p2 - p = 2(q2 + q)$
 $p2 + (2a - 1)p = 2(q2 + q)$
 $p (p + (2a-1)) = 2(q2 + q)$
Since $a \in \mathbb{Z}$, $2a-1$ must be odd.
Let $m = 2a-1$
So, $p(p+m) = q2 + q - p(p-1)/2$, where m is odd

Using this variation, I made a chart starting with q=3 and found all possible p for each q up to q=41. I took each q and found $2(q^2+q)$. Then, I found the prime factorization of $2(q^2+q)$. Using

 \Diamond

the prime factorization, I was able to find pairs of factors p(p + m) where one was even and one was odd.

Table 1. Graphs with p vertices and q edges that may be edge-

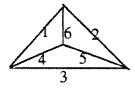
graceful.		
q	$2(q^2+q)$	p
3	2 4	1, 24, 3, 8
4	4 0	1, 40, 5, 8
5	6 0	1, 60, 5, 12, 3, 20, 4, 1 5
6	8 4	1, 84, 7, 12, 3, 28, 4, 2 1
7	112	1, 112, 7, 16
8	1 4 4	1, 144, 9, 16, 3, 48
9	180	1, 180, 3, 60, 5, 36, 9, 20, 15, 12, 45, 4
1 0	220	1, 220, 5, 44, 11, 20
1.1	264	1, 264, 3, 88, 11, 24, 33, 8
1 2	312	1, 312, 13, 24, 3, 104, 8, 39
1 3	364	1, 364, 91, 4, 13, 28, 7, 52
1 4	420	1, 420, 3, 140, 5, 84, 12, 35, 7, 60
1 5	480	1, 480, 3, 160, 5, 96, 15, 32
1 6	5 4 4	1, 544, 17, 32
1 7	612	1, 612, 3, 204, 9, 68, 17, 36, 51, 12
1 8	684	1, 684, 3, 228, 9, 76, 19, 36, 57, 12, 171, 4
19	760	1, 760, 5, 152, 19, 40, 95, 8
2 0	8 4 0	1, 840, 3, 280, 5, 168, 7, 120, 15, 56, 21, 40, 35, 24
2.1	924	1, 924, 3, 308, 7, 132, 11, 84, 21, 44, 33, 28, 77, 12

	A	
2 2	1012	1, 1012, 11, 92, 23, 44, 253, 4
2 3	1 1 0 4	1, 1104, 3, 552, 23, 48, 69, 16
2 4	1200	1, 1200, 3, 400, 5, 240, 15, 80, 25, 48, 75, 16
2 5	1300	1, 1300, 5, 260, 13, 100, 65, 20, 25, 52
2 6	1 4 0 4	1, 1404, 3, 468, 9, 156, 13, 108, 117, 12, 27, 52, 351, 4, 39, 36
2 7	1512	1, 1512, 3 504, 7, 216, 9, 168, 21, 72, 27, 56, 63, 24, 189, 8
2 8	1624	1, 1624, 8, 203, 7, 232, 29, 56
2 9	1740	4, 435, 3, 580, 5, 148, 29, 60, 15, 116, 20, 87, 12,145
3 0	1860	4, 465, 5, 372, 3, 620, 31, 60, 12, 155, 20, 93, 124, 15
3 1	1984	64, 31
3 2	2112	3, 704, 11, 192, 33, 6 4
3 3	2244	4, 561, 3, 748, 11, 204, 17, 132, 33, 68, 51, 44, 12, 187
3 4	2380	5, 476, 7 340, 17, 140, 35, 68, 85, 28, 119, 20
3 5	2520	3, 840, 5, 504, 7, 360, 9, 280, 15, 168, 21, 120, 35, 72, 45, 56, 63, 40, 24, 105
3 6	2664	3, 888, 37, 72, 9, 296, 111, 24, 333, 8
3 7	2812	19, 148, 37, 76, 703,

3 8	2964	3, 1040, 5, 624, 13, 240, 39, 76, 57, 52, 4, 741
3 9	3120	3, 1040, 5, 624, 13, 240, 39, 80,15, 208, 65, 48, 195, 16
4 0	3280	5, 656, 41, 80, 205, 1 6
4 1	3 4 4 4	4, 861, 12, 287, 28, 123, 21, 164, 3, 1148, 7, 492, 41, 84

A wheel is the (n+1, 2n) graph which results from adding 1 central vertex & n edges connecting the new vertex to every vertex of a cycle C_n . Wheels are designated W_n , where n refers to the number of vertices in the outer cycle. I examined wheels for edge-gracefulness and found that W_3 is edge-graceful.

Figure 3. W₃



Corollary. Wheels are not edge-graceful except for W3.

Proof: A wheel W has n+1 vertices and 2n edges. According to Lo, if a graph G with p vertices and q edges is edge-graceful, then $p \mid q^2 + q - p(p-1)/2$.

Assume W is edge-graceful.

$$n+1 + (2n)^2 + 2n - (n+1)n/2$$

 $4 n^2 + 2n - (n^2+n)/2$
 $7 n^2/2 + 3n/2$

div by
$$n+1 \to 7n/2 - 2 + 2/(n+1) \in \mathbb{Z}$$

$$\rightarrow 7n/2 + 2/(n+1) \in \mathbb{Z}$$

 $7n/2 \in \mathbb{Z}$ or halfway between integers

 \rightarrow 2/(n+1) \in Z or halfway between integers

Case 1.
$$n = 1$$

$$7/2 + 1 = 9/2 \notin \mathbb{Z}$$

Case 2.
$$n = 3$$

$$21/2 + 1/2 = 11 \in \mathbb{Z}$$

For $n > 3$, $2/(n+1) < 1/2$, so $7n/2 + 2/(n+1) \notin \mathbb{Z}$ for $n>3$.

I examined complete graphs, K_{p_i} for edge-gracefulness. A complete (p, q) graph is a regular graph of degree p-1 having q = p(p-1)/2. Research on complete graphs and edge-gracefulness has been previously done by others.

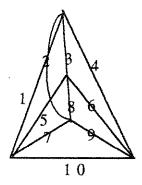
K3 is edge-graceful, which is a trivial case.

Figure 4. K3

K₄ = W₃ is edge-graceful.

K5 is edge-graceful.

Figure 5. K_5 , which is obtained from $K_4 = W_3$ by adding a vertex and corresponding edges.



A bicycle consists of 2 cycles that intersect at a vertex, several edges, an edge, or are joined by a path. There are several types of bicycles, such as figure 8, theta, and handcuff.

Figure 6. Figure 8 graph
2 cycles joined at a vertex

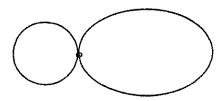


Figure 7. Theta graph
2 cycles joined at an edge or several edges

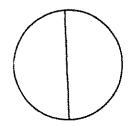
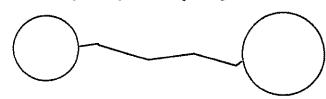


Figure 8. Handcuff graphs
2 cycles joined by a path

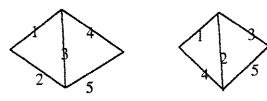


Corollary. Bicycles are not edge-graceful except for q=5. Proof: Let B be any bicycle. B has q edges and q-1 vertices. According to Lo, if a graph G with p vertices & q edges is edgegraceful, then $p \mid q^2 + q - p(p-1)/2$: Assume B is edge-graceful, so $q-1 \mid q^2 + q - (q-1)(q-2)/2$ $q^2 + q - (q^2 - 3q + 2)/2 = q^2 + q - q^2/2 + 3q/2 - 1 = q^2/2 + 5q/2$ - 1 divided by $q-1 \rightarrow q/2 + 3 + 2/(q-1) \in \mathbb{Z}$ \rightarrow q/2 + 2/(q-1) \in Z $q/2 \in \mathbb{Z}$ or halfway between two integers \rightarrow 2/(q-1) should be \in Z or halfway between two integers Case 1. q = 3 (actually trivial, since bicycle has more than 3 edges) $q/2 + 2/(q-1) = 3/2 + 1 = 5/2 \notin \mathbb{Z}$ Case 2. q = 5

$$q/2 + 2/(q-1) = 5/2 + 1/2 = 3 \in \mathbb{Z}$$

For $q>5$, $2/(q-1) < 1/2$, so $q/2 + 2/(q-1) \notin \mathbb{Z}$ for $q>5$.

Figure 9. Edge-graceful bicycle labelings for p=4, q=5



This is the only bicycle w/ 5 edges

A tricycle consists of 3 cycles, rather than 2, with the definition similar to that of bicycles.

Corollary. Tricycles are not edge-graceful except for q=6, 14. Proof: Let T be any tricycle. T has q edges & q-2 vertices. According to Lo, if a graph G with p vertices & q edges is edge-graceful, then $p \mid q^2 + q - p(p-1)/2$.

Assume T is edge-graceful.

$$q-2 + q^2 + q - (q-2)(q-3)/2$$

 $q^2/2 + 7q/2 - 3$
div by $q-2 \rightarrow q/2 + 9/2 + 6/(q-2) \in \mathbb{Z}$

 $\frac{div}{dy} = \frac{d^2}{dx^2} + \frac{d^2}$

 $\rightarrow (q+9)/2 + 6/(q-2) \in \mathbf{Z}$

 $(q+9)/2 \in \mathbb{Z}$ or halfway between integers

 \rightarrow 6/(q-2) \in Z or halfway between integers

Case 1. q = 4

$$(q+9)/2 + 6/(q-2) = 13/2 + 6/2 = 19/2$$

Case 2. q = 6

$$(q+9)/2 + 6/(q-2) = 15/2 + 3/2 = 9$$

Case 3. q = 8

$$(q+9)/2 + 6/(q-2) = 17/2 + 1 = 19/2$$

Case 4. q = 10

$$(q+9)/2 + 6/(q-2) = 19/2 + 3/4 = 41/4$$

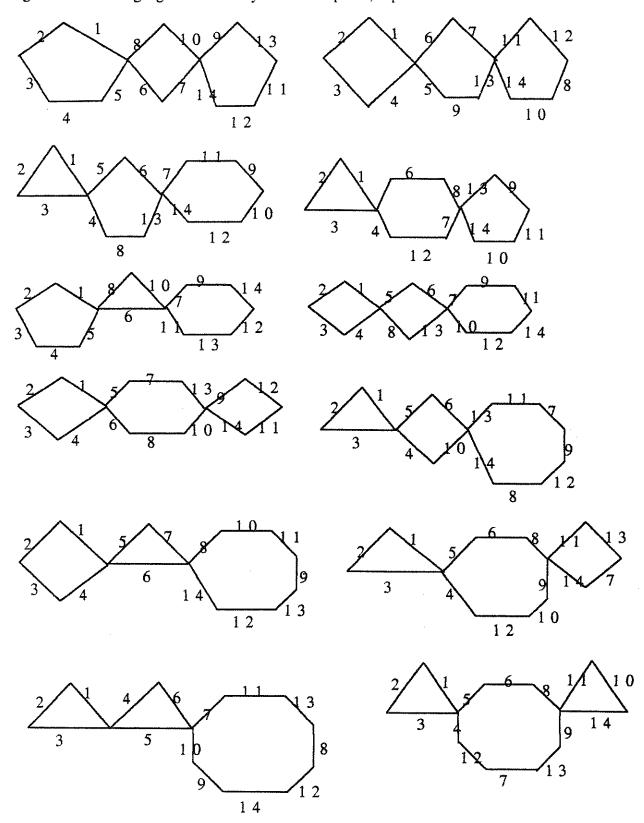
Case 5. q = 14

$$(q+9)/2 + 6/(q-2) = 23/2 + 1/2 = 12$$

For q > 14, 6/(q-2) < 1/2, so $(q+9)/2 + 6/(q-2) \notin \mathbb{Z}$ for q > 14. \diamond

The edge-graceful tricycle for p = 4, q = 6 is K_4 .

Figure 10. Edge-graceful tricycles for p=12, q=14



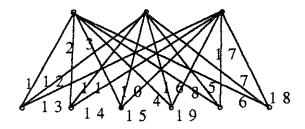
-Complete n-partite graphs Def. A graph G is n-partite, n>1, if it is possible to partition V(G) into n subsets $V_1, V_2, ..., V_n$ (partite sets) such that every element of E(G) joins a vertex of V_i to a vertex of V_j , $i\neq j$

I examined bipartite graphs for edge-gracefulness. Based on Lo's theorem, K3,6 may be edge-graceful. $p=9,\ q=18$ $p\mid q^2+q-p(p-1)/2$ $9\mid 18^2+18-9(8)/2$ 324+18-36=306

I found an edge-graceful labeling for K3.6.

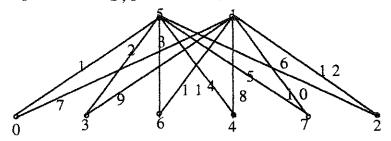
Figure 11. K3,6

306/9 = 34



Based on Lo's theorem, $K_{3n,6n}$ may be edge-graceful for n odd. p = 9n, $q = 18n^2$ $9n + (18n^2)^2 + 18n^2 - 9n(9n-1)/2$ div. by $9n \rightarrow 36n^3 + 2n - (9n-1)/2 \in \mathbb{Z}$ $\rightarrow (9n-1)/2 \in \mathbb{Z} \rightarrow 9n-1$ even $\rightarrow 9n$ odd $\rightarrow n$ odd

Figure 12. $K_{2,6}$ is edge-graceful.



I examined tripartite graphs for edge-gracefulness. $K_{1,2,4}$ is edge graceful.

Figure 13. 2 different edge-graceful labelings for K_{1,2,4}



 $K_{n,2n,4n}$ satisfies the theorem for n odd, so they may be edge-graceful.

$$p = 7n$$

vertices: n of deg 6n, 2n of deg 5n, 4n of deg 3n

$$q = (6n^2 + 10n^2 + 12n^2)/2 = 14n^2$$
 edges

$$7n + (14n^2)^2 + 14n^2 - 7n(7n-1)/2$$

div by
$$7n 28n^3 + 2n - (7n-1)/2 \in \mathbb{Z}$$

$$\rightarrow$$
 $(7n-1)/2 \in \mathbb{Z} \rightarrow 7n-1$ even $\rightarrow 7n$ odd \rightarrow n odd

```
K_{n}, n^{2}, n^{3} satisfies the equation for n odd, so they may be edgegrace ful. p = n + n^{2} + n^{3} = n(1 + n + n^{2}) vertices: n of deg (n^{2} + n^{3}), n^{2} of deg (n + n^{3}), n^{3} of deg (n + n^{2}) q = [n(n^{2} + n^{3}) + n^{2}(n + n^{3}) + n^{3}(n + n^{2})]/2 = n^{3} + n^{4} + n^{5} = n^{3}(1 + n + n^{2}) n(1 + n + n^{2}) | [n^{3}(1 + n + n^{2})]^{2} + n^{3}(1 + n + n^{2}) - n(1 + n + n^{2})[n(1 + n + n^{2})]/2 div by n(1 + n + n^{2}) n^{5}(1 + n + n^{2}) + n^{2} - [n(1 + n + n^{2}) - 1]/2 \in \mathbb{Z} \rightarrow [n(1 + n + n^{2}) - 1]/2 \in \mathbb{Z} \rightarrow n(1 + n + n^{2}) - 1 even \rightarrow n(1 + n + n^{2}) odd Let n be even \rightarrow n + 1 odd, n^{2} even \rightarrow (1 + n + n^{2}) odd \rightarrow n(1 + n + n^{2}) even \rightarrow \in
```

Other tripartite graphs that may be edge-graceful (satisfy Lo's Thm where $p \mid q^2 + q - p(p-1)/2$) $K_{1,3,4} \quad p=8, \ q=19$ $K_{1,1,10} \quad p=12, \ q=21$ $K_{1,2,9} \quad p=12, \ q=29$ $K_{1,5,6} \quad p=12, \ q=41$ $K_{1,3,9} \quad p=13, \ q=39, \ K_{n,3n,9n}$ for n odd