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Abstract

We define and study circulant graphs, and prove Adam’s isomorphism
theorem. We then define edge-transitivity and enumerate several families of
edge-transitive circulants, including s-partite graphs, wreath graphs and
cardinal products. We conclude with speculation on the edge-transitivity of

circulants with a prime number of vertices.
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Section 1. Introduction

This work will focus on a class of simple, undirected graphs known as
circulants. A circulant graph, written Cy(ai,az,...,ax) or simply Cp(a:), has
vertex set 0,...,p-1 and edges (u,v) iff £ (u-v) = a (mod p) forsome 0 i<k
[Bo] . The vertices are usually arranged in order around a circle {(note: the
vertex 0 can be replaced with p). The a: are called the jumps, and together
a1,az,...,a form the jump sequence. If a jump ai is greater than p/2, then it is
equivalent to the jump p-a: and is usually reduced to the latter form; so
C+(6,5) = C+(1,2). An edge which is created due to a jump of ai issaid tobe a
ai-edge, or to belong to the ai-class. An example of a circulant is Cs(1,2)
which is depicted below:

Figure 1: C3(1,2)

If pis even and a =p/2, then ax is called a diagonal jump and each vertex is
incident to exactly one ax-edge. If ai < p/2, then each vertex is incident to
exactly two ai-edges. The degree of a vertex v is the number of edges

incident on v. A circulant without a diagonal jump has vertices of degree 2k,



while a circulant with a diagonal jump has vertices of degree 2k-1. The set A,
is defined as the canonical set of possible jumps for a circulant with p vertices;
thus Ap ={1,2,..., | p/2}}. For example, As = As ={1,.2}.

A symmetry (automorphism) of a graph G is an isomorphism from G
onto itself, and can be thought of as a permutation on the vertices which
preserves adjacency. These symmetries form a group under composition.
Two vertices (or edges) are similar if there exists a symmetry which takes one
to the other. A graph is vertex-transitive if all pairs of vertices are similar,
and is edge-transitive if all pairs of edges are similar. A dart is a vertex and
one of its incident edges and is represented by the notation (u,v) where the
vertex u and the edge (u,v) comprise the dart. Thus the dart (u,v) is different
from the dart (v,u) and can therefore be thought of as a directed edge.
However it is important to note that this does not imply that the graph is

directed. A graph is dari-transitive if all pairs of darts are similar.

Lemma 1.1: All circulants have as symmetries the rigid motions of rotation

and reflection,

Proof:
(1) Define r: {0,1,...,p-1} = {0,1,...,p-1} by 1(x) = x+c (mod p) for some integer c.
Then r is a rotation on Gy (ai).
The vertex u is adjacent to the vertex v in C,(a:)
iff + (u-v) = a (mod p) for some 0 <i<k.
iff £(r(u)-r(v)) = Hu+c-v-¢) = (u-v) = a (mod p) for some 0 < i<k,
Thus r(u) is adjacent to r(v). Sincerisa permutation of the vertices which
preserves adjacency, rotation is a symmetry on C,{a).
(2) Define s: {0,1,...,p-1} = {0,1,...,p-1} by s(x) = c-x {mod p) for some integer c.
Note that s is a reflection on Cp(as).
The vertex u is adjacent to the vertex v in Cp(a)
iff £ (u-v) = ai (mod p) forsome 0 <i<k.

iff Hs(u)-s(v)) = H(c-u-c+v) = £(v-u) = £(u-v) = ai (mod p) for some 0 <i<sk.
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Thus s(u) is adjacent to s(v). Since s is a permutation of the vertices which

preserves adjacency, reflection is a symmetry on G;(a).

Any two vertices of a circulant are similar through rotation, thus all
circulants are vertex-transitive. However, circulants may or may not be edge-
transitive. For example in Figure 2, Cs(1,3) is edge-transitive while Cs(2,3) is

not.

Cs(1,3) Cs(2,3)
Edge-transitive Not Edge-transitive
Figure 2

It is easy to see that Cs(2,3) fails to be edge-transitive because symmetries
preserve cycles. Since the edge (6,2) is in a 3-cycle but (6,3) is not, these edges
are not similar, proving that the graph is not edge-transitive. To show that

Cs(1,3) is edge-transitive, the following lemma is useful.

Lemma 1.2: The graph Ci(ai,as,...,as) is edge-transitive iff for each pair of
jumps & and ai+1 there exists a symmetry which takes an a:-class edge to an
ai +1-class edge.



Proof: Any two edges in the same jump class are similar by rotation. Let the
symmetry O guaranteed by the hypothesis take (j,j+a) from the ai-class to
(k,k+ai+1) of the ai+i-class. Since the composition of multiple symmetries is
again a symmetry , similarity between edges (and vertices and darts) is
transitive. Thus any edge in the a:-class is similar to (jj+ai) which is similar
by O to (kk+ai+1) which in turn is similar to all edges in the ai+1-class. Thus
any two edges of adjacent jump classes are similar, however by transitivity
this implies that any two edges of any two jump classes are similar. Therefore

since any pair of edges is similar, the circulant is edge-transitive.

Thus, in order to show that Cs(1,3) is edge-transitive, it is sufficient to find
a symmetry which takes a 1-class edge to a 3-class edge. The symmetry f = (1
3)(2 4) takes the edge (0,1) to the edge (0,3). So, by Lemma 1.1, Cs(1,3) is edge-

transitive.
Lemma 1.3: If a circulant is edge-transitive, then it is dart-transitive.

Proof: All circulants have as a symmetry the reflection s which will take the
dart (0,1) to the dart (1,0). Consider the dart (u,v). Since the circulant is edge-
transitive, the edge (u,v} is similar to the edge (0,1). Thus the dart (u,v) is
similar to either the dart (0,1) or (1,0). Since all darts are similar to either (0,1)
or (1,0) which are similar to each other, any pair of darts are similar.

Therefore the graph is dart-transitive.

The preceding lemma is a useful property of circulants which will be used
in a later proof. Also useful is the fact that the complement of a circulant is

again a circulant.

The complement of a graph G is the graph G with the same vertices as G.

An edge exists in G iff it does not exist in G. Thus Ci(ar,az,...,a) =
G ({As\a, az,...,ac}}).



Section 2. Isomorphism

One of the natural questions raised when examining graphs is of
isomorphism. Is it possible to determine just by exploring the notation when
two graphs are isomorphic? Obviously, to be isomorphic two circulants must
have the same number of vertices and edges (which correspond to jumps for
circulants). Also, a circulant with a diagonal jump cannot be isomorphic to a
circulant which does not have a diagonal jump. The following theorem

provides for a case when two circulants must be isomorphic.

Theorem 2.1: Let gcd{p,n) = 1 (p and n are relatively prime). Then
Ci(a,a,...,a) = Cp(na:,nay,...,nax), where multiplication is mod p.

Example: Note that gcd(8,3) =1 and that Cs(1,2) = Cs(2,3) since 3*1 = 3 and
3*2 = 6 which is reduced to 8-6 which equals 2.

Proof: Let G = Cy(a,az,...,4) and G’ = Cy(nas, naz,...,nax). Define ¢ : {0,1,...,p-1}
- {0,1,...p-1} by ¢(x) = nx (mod p). Since ged(p,n) =1, @ is a bijection. Two
vertices j and k are adjacent in G iff + (j-k) = a& (mod p). Again, since n is
relatively prime to p, this is equivalent to + (nj-nk) = ain (mod p). Thusd(j)
is adjacent to@¢ (k) in G’. Therefore is a 1-1 function on the set of vertices

which preserves adjacency, and is thus an isomorphism.

This theorem was originally proved by Adam in 1967, although we are not
aware of his method of proof. Thus, two circulants which are isomorphic due
to this theorem are called Adam isomorphic. We, like Adam, originally
speculated that the converse of this theorem was true: that any two
isomorphic circulants must be Adam isomorphic. We were both wrong.
Elspas and Turner showed in 1970 that Cis(1,2,7) = Cis(2,3,5), which are not
Adam isomorphic as there is no integer n which when multiplied by the .
jump sequence (1,2,7) results in (2,3,5) [El] . Thus, this theorem allows us to

show that two circulants are isomorphic, but just because an n cannot be
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found which fulfills the hypothesis does not mean that the graphs are not

isomorphic.



Section 3. Basic Families of Edge-Transitive Circulants

Thus, we are brought to the main body of this work: finding families of
edge-transitive circulants. The section for each family concludes with an
associated formula, labelled (1} through (11), which will produce an edge-
transitive circulant. These families are not exhaustive, so it is not necessary
for an edge-transitive circulant to belong to one of the families presented in
this paper. It is doubtful that an exhaustive categorization could be found
without a deeper understanding of the symmetries which guarantee each
graph’s edge-transitivity. With this said, we will start with a few basic cases.

Theorem 3.1: All cycle graphs are edge-transitive circulants of the form Cy(n)
where ged(pn) = 1.

Example: The pentagon,Cs(1), which is isomorphic to the five-pointed star,

Cs(2), is edge-transitive.
Proof: It is obvious that all cycle graphs are circulants of the form C, (1),.
which is Adam isomorphic to all Cp(n) where n is relatively prime to p.
Since all of the edges of a cycle graph are in the same jump class, all pairs of
edges are similar by rotation. Therefore all cycle graphs are edge-transitive.
Theorem 3.1 gives us our first edge-transitive family of circulants:

Cr(n) where ged(p,n) = 1 (1)
Cycle graphs on p vertices are abbreviated simply as Cs.

Theorem 3.2: All complete graphs are edge-transitive circulants.

Proof: In the complete graph, each vertex is adjacent to every other vertex. It
is written Cy(Ay), or abbreviated Kp. Since each vertex is adjacent to every
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other vertex, any permutation of the vertices will preserve adjacency and
thus will be a symmetry. Thus any edge (j,k) is similar to any other edge (u,v)
since any permutation f such that f(j) = u and f(k) = v is a symmetry which
takes one edge to the other. Since all pairs of edges are similar, K, is edge-

transitive.

Thus our second family of edge-transitive circulants is:
Ke = G (As) (2)

If ged(p,ai,az,...,a) = d # 1, then the circulant Cy(a,az,...,a) is called a

multiple graph. The following theorem shows that this is a disconnected
graph.

Theorem 3.3: Let gcd(p,ai,a,...,a) =d # 1. Then Co(a,a,...,a) =
dCpe(a/d,a/d,...,a/d) which is notation for d separate copies of
Coe(ai/d,adl/d,...,a/d).

Example: Cs(2,4) = 2C(1,2):



Cs(2,4) 2C4(1,2)
Figure 3

Proof:
{1) Examine two adjacent vertices u and v in Cy(ai,az,...,ax). We know that
+(u-v) = a (mod p) for some 1 <i<k. Since dlp and djai then u-v = 0 (mod
d). This is an equivalence relation which partitions the set of vertices into d
classes:

{0.d,...p-d}, {1,d+1,..,p-d+1}, ..., {d-1,2d-1,... p-1}.
No edge exists between two vertices not in the same class, thus we have d
separate graphs.
2) Examine the graph on the vertices {j,d+j,...,p-d+j}. Two vertices b and ¢ are
adjacent if #(b-¢) = ai {mod p). Since d divides all the vertices - j,

*((b-)/d - (c)/d) =H(b/d - ¢/d) = ai/d (mod p/d).

So if we renumber each vertex u by (u-j)/d, we have the graph on p/d vertices
labelled {0,1....,p/d-1} which are adjacent only if their difference is congruent
to some a/d (mod p/d). Thus it is the graph Cua(ai/d,a/d,...,a/d), which is
called the base graph. Therefore Cy(ai,a,...,ax) is made up of d separate
copies of the base graph which = d Cua(ar/d,ax/d,...,ax/d).



Theorem 3.4: If gcd(p, a1,as,...,ax) =d # 1 and Cwe(ai/d,a/d,...,a/d) is edge-

transitive then Cy(ai,az,...,ax) is edge-transitive.

Proof: Since the base graph Cpa(ai/d,a:/d,...,ad/d) is edge-transitive, all pairs
of edges within a base graph are similar. Rotation will take one base graph to
all of the others in the multiple graph, thus the base graphs are similar. Thus
all pairs of edges within the multiple graph are similar making the multiple
graph Cy(ai,az,...,ax) edge-transitive.

This gives us our third family:

if ged(p, ar,az,...,a) = d # 1 and Cpu(ai/d,ax/d,...,ad) is
edge-transitive then Cy(ai, a,...,a) is edge-transitive. (3)

Theorem 3.5: For Cy(ai,az,...,aq), if ged(n,p) = 1 and n cyclically permutes the
jumps (meaning each a = n’a: for some 1 < j < k), then the circulant is edge-

transitive. Also n* = x1 (mod p).

Example: Consider Cis(1,2,4,7) with n = 2. Note that ged(15,2) =1 and 1*2 = 2,
2*2 = 4, 42 = 8 which reduces to a jump of 7, and 2*7 = 14 which reduces to a
jump of 1. Also, 2* =16 = 1(mod 15).

Proof:

(1) From Lemma 1.2, to prove that Cy(ai,2z,...,ax) is edge-transitive, it is
sufficient to show that for any two jumps & and ai.: there exists a symmetry
which takes an ai-class edge to an ai+1-class edge. Since n cyclically permutes
the jumps, ai+1 = 0’ * & for some j<k. Two vertices u and v are adjacent iff
*(u-v) = a (mod p). Since n is relatively prime to p, multiplying each side of
the equation by n' will result in (n'u-n'v) = ain’ (mod p) = ai+:1(mod p). If
V = {vertices of Cy(as,az,...,a) }, we can define¢: V — V to be ¢(x) = n'x (mod
p). Since £(¢(ai)-@(ai+1)) = ai+1(mod p),@(a) and ¢(ai+1) are adjacent.
Therefore is a symmetry which takes an ai-class edge to an ai +1-class edge
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and Cy(as,as,...,a) is edge-transitive.
(2) Since n cyclically permutes the jump sequence, a * n* = a (mod p).

Therefore n* = 1 (mod p).

Thus we are presented with the following broad family of edge-transitive

circulants:

Ci(ai,az,...,a) where ged(n,p) = 1 and n cyclically permutes the jumps  (4)

11



Section 4. Set Product

Definition 4.1: The set product of a graph G: and an integer n, written as G
~ n, is defined as follows:

The vertices of G ~ n = V(G) x {0,....n-1}

The edges of G ~ n = {{(a,b),(c,d)) ! (a,c) is an edge in G}

Example:

G Gi~3
Figure 4

Theorem 4.1: If a graph G is edge-transitive, then G ~ n is edge-transitive.

Proof: Each edge in G is replaced by a “clump” of edges in G ~ n. We will first
show that all clumps of edges in G ~ n are similar. Also, all edges within one
clump are similar. Thus by transitivity, any two edges in G ~ n are similar.
More specifically, let [(a,i),(bj)] and [(ck),(d])] be two edges in G ~ n. We must
show that there exists a symmetry which takes one to the other. '
First, we will show that there exists a symmetry which takes [(a,i),(bj)] to
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[(ci),(d,j)]. By definition of G ~ n, we know that (a,b) and (c,d) are edges in G.
Since G is edge-transitive, there exists a symmetry ¢:V(G) — V(G) which
takes (a,b) to (c,d). Without loss of generality, we will assume ¢{a) =cand
@¢(b) =d. Define ¢": V(G ~ n) — V(G ~n) by ¢'((a1)) = (¢(a),i). Must show
that ¢’ is a symmetry.

The vertices (x,m) , (y,n) are adjacentin G ~ n

iff x and y are adjacent in G

iff ¢(x) and @(y) are adjacent in G

iff (¢(x),m) and (@(y),n) are adjacent in G ~n

iff ¢’(x,m) and ¢’(y,n) are adjacent in G ~ n.
Since ¢’ is a permutation of the vertices which preserves adjacency, ¢'isa
symmetry. Since §'((ai)) = (¢,i) and @’((b,j)) = (dj), the edge [(a,i),(b,j)] is
similar to [(c,i),(d.j)]-

Second, we will show that there exists a symmetry which takes [(c,i),(d,j)] to
[(c,k),(d,1)] which are in the same clump of edges in G ~ n. Note that the
vertices (c,i) and (c,k) are both adjacent to the set of vertices {uin G | uis
adjacent to ¢} x {0,1,...,.n-1}. Thus the permutation which interchanges (c,i)
and (c,k) and fixes all other vertices is a symmetry. For the same reason, there
is a symmetry which interchanges (d,j) and (d,]). The composition of these
two symmetries takes the edge [(c,i),(d,})] to [(ck),(d,])], thus the two edges are
similar. |

By transitivity, [(a,i),(b,j)] is similar to [(c,k),(d,])]. Thus any pair of edges in

G ~ n is similar. Therefore G ~ n is edge-transitive.
A complete s-partite graph is written Kan.... where s is the number of n's.

There are s sets of n vertices, and a vertex of one set is adjacent to every vertex

in every other set. For example, figure 5 shows Kz2.2.:.
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Figure 5: K222

Theorem 4.2: Complete s-partite graphs are edge-transitive circulants, with
Kio..n = Ca(fa€ Aw | s does not divide a})

Example: Ksss = Cis(1,24,5,7)

Proof: Note that Kan..n = Ki ~n. K is edge-transitive from Theorem 3.2, so
from Theorem 4.1, Ks ~n = Kan..» is edge-transitive. It remains to be shown
that complete s-partite graphs are circulant. Notice that in the complement of
Kos.u...n, each vertex is adjacent only to all of the vertices in its own set,
forming s separate copies of the complete graph on n vertices.
Ksan..n =5Ka
= 5Cn(An)
= Ca(s,2s,...,| n/2 |s) by Theorem 3.3.
Kon..o = Ca({a€ An | s does not divide a}).

Thus we have another family of edge-transitive circulants:
Ca({ae Aw | s does not divide a}) (5)

Wreath graphs, written W(s,n), also have s sets of n vertices. The sets of
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vertices are arranged around a circle, and a vertex in one set is adjacent to the
vertices of the sets immediately to the left and right of its own set. For

example, W(4,2) is displayed in figure 6.

Figure 6: W(4,2)
Theorem 4.3: All wreath graphs are edge-transitive circulants, with W(s,n) =
Ca({a€ As | 2 = +1 (mod s)})

Example: W(5,3) = Cis(1,4,6)

Proof: Note that W(s,n) = C: ~ n. We know that C; is edge-transitive from
Theorem 3.1, so from Theorem 4.1, C: ~n = W(s,n) is edge-transitive. It
remains to be shown that wreath graphs are circulant.

Let W(s,n) consist of vertices Vs where 0 <i <s-1and0 <£j £ n-1and
edges ( Vi, Vu) when k = i+ 1 (mod s). Note that i determines which set the
vertex is in while j determines the element within the set. Define ¢:
vertices(W(s,n)) — {0,1,...ns-1} tobe §(Vy) =i+js. Let(Vw, V) be an edge
in W(s,n). this means ¢ =a 1 (mod s). This is true iff ¢ - a = *1 (mod s)

iffc-a+s(d-b) = 1 (mod s)
if (c + ds) - (a + bs) = %1 (mod s)
iff (V) - @( V) = +1 (mod s)

15



iff (¢(Vw),@(Va)) is an edge in Cu(la€ Asw | a = %1 (mod s)}).
Since ¢ is a one-to-one onto function which preserves adjacency, it is an

isomorphism.
This proof gives us the following family of edge-transitive circulants:
Csn({ae Ac la=+1 (mOd S)}) (6)

Thus we have shown, using corhplete s-partite graphs and wreath graphs
that the set product of complete graphs and cycle graphs are edge-transitive
circulants. This raises the question of the set products of other edge-transitive
graphs. It turns out that the set product of any edge-transitive circulant is

again an edge-transitive circulant.

Theorem 4.4: If Cy(as,a,...,as) is edge-transitive, then Cy(ai,az,...,a&) ~nis
edge-transitive and is isomorphic to Cwp({fa € Aw | a = +ai (mod p)}).

Example: Cis(2,7) ~2 = C=(2,7,8,13) is edge-transitive.

Proof: It was shown in Theorem 4.1 that Cy(ai,as,...,a8) ~n is edge-transitive
when Ci(as,a,...,ax) is, so it remains to be shown that Cp(ai,az,...,a) ~n =
Cw({a € Aw | a = +a (mod p)})

Let Cy(a) ~ n consist of vertices (i) where 0 €i <p-land 0 <j < n-1 and
edges [(ij),(k]1)] when k =i+ a (mod p). Define ¢: vertices(Cp(ai) ~ n) —
{0,1,...np-1} to be @(i,j) =i+ jp. Let[(a,b),(c,d)] bean edge in Cy(a) ~ n. This
means ¢ = at & (mod p). This is true iff c - a = *a (mod p)

iffc-a+p(d-b) = +a (mod p)

iff (¢ + dp) - (a + bp) = ta: (mod p)

iff §(ab)- ¢(c,d) = £a: (mod p)

iff (@(ab),¢(c,d)) is an edge in Cw(fa € Aw | 2 = +ai (mod 1913}
Since ¢ is a one-to-one onto function which preserves adjacency, it is an

isomorphism.
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Theorem 4.4 gives the following broad family:

If C(as,az,...,ax) is edge-transitive, then
80 is Cnp({a L5 Anp la=da (mOd p)})

Note that family 7 incudes families 5 and 6, however families 5 and 6 are

useful since they are easier to recognize.

17
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Section 5. Cardinal Product

The next three families all involve the cardinal (Kronecker) product which

is introduced here.

Definition 5.1: The cardinal product of two graphs G and G2, written as
G » (32, is defined as follows:
The vertices of (h A G2 = V(1) x V(G2)
The edges of G: A Gz = {((a,b),(c.d)) | (ac)isanedgein Gi and (b,d) is an
edge in Gz}

Lemma 5.2. The cardinal product of two edge-transitive circulants is edge-

transitive.

Proof: Gary Amende showed in his 1994 REU paper that the cardinal product
of a dart-transitive graph and an edge-transitive graph is edge-transitive [Am].
It was shown in Lemma 1.3 that an edge-transitive circulant must be dart-
transitive. Therefore the cardinal product of two edge-transitive circulants is

edge-transitive.
For convenience, we will display the vertex set of the cardinal product of

two circulants Cu(a:) and Ca(bj) in the following chart, where each ordered

pair is a vertex of the product graph:
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| o 2 . . j . a1
0 (0,0) (0,1) (0,2) (0,]) (0,n-1)
1| 1.0 (1,1) (1,2) (1.1) (1,n-1)
2 | 20 | @n (2,2) (2,]) (2,n-1)
i) G0 | (L) (i,2) (L) | (i,n-1)
m-1 (m-1,0) {m-1,1) (m-1,2) | (m-1,j) l {m-1,n-1)

Figure 7: Ca{a:) » Cu(by)

Two vertices in the product graph are adjacent only if their first numbers in

the ordered pair are adjacent in Cw(a) and their second numbers in the

ordered pair are adjacent in Cz(bi). For example, (2,2) is adjacent to (i,j) if 2 is
adjacent to i in Cw(a:) and 2 is adjacent to j in Cu(bi). Thus to determine if an

edge exists between two vertices in the product graph, we need only check if

an edge exists between their row headings and between their column

headings. For the purpose of this paper, I will examine the case where m and

n are relatively prime. Now we can number the vertices of the product graph

0 through mn-1 in the following manner, where multiplication and addition

is mod mn:
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0 1 2 - ; | n-1

0 0 m 2m ' im (n-1)m

1 n n4+m i n+2m n+jm n+{n-1)m

2 2n 2n+m I 2n+2m 2n+jm - 2n+(n-1)m
| ;

i in in+m i in+2m in+jm Cin+(n-1)m
| |

m-1 (m-1)n | (m-1)n+mi(m-1)n+2m! [(m-1)n+jm.  2mn-m-n

Figure 8: Cn{a:) » Cu(by), ged(m,n)=1

Because m and n are relatively prime, each number in this chart is unique

and thus the vertices are the set {0,1,...,mn-1}. For example, Cs(a:) » Cs(by) is

displayed in figure 9:
0 | 1 2 | 3 4
i e T R I ST
0 0 3 6 9 12
1 4 7 10 13 1
2 | 8 11 14 2 5

Figure 9: Cs(a) » Cs(by)

Theorem 5.3: If ged(m,n)} =1, Co A Cs is an edge-transitive circulant of the

form Cum(m-n,m+n),

Example: Cs A G = Cis(2,7)

Proof: It was shown in Theorem 3.1 that cycle graphs are edge-transitive, so

from Lemma 5.2 we know that the cardinal product of two cycle graphs is

edge-transitive. Examine the row and column headings in Figure 8. Since
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the circulants are cycles, each row heading will be adjacent only to the vertices
immediately above and below it, and each column heading will be adjacent
only to the vertices immediately to the left and right of it. Thus a vertex in
the product graph will be adjacent only to the four vertices corresponding to
its diagonals. For example, the vertex m+n will be adjacent to the set
{0,2m,2n+2m,2n}.

On the 45° diagonal, vertices differ in number by #(m-n). On the 135°
diagonal, vertices differ by +(m+n). Therefore if we place the vertices 0
through mn-1 on a circle, we have a circulant on mn vertices with jumps of

m-n and m+n.

This gives us the first of our cardinal product families of edge-transitive
graphs:

Comn (m-n,m+n), where ged(m,n) = 1 (8)

Theorem 5.4: If ged(m,n) = 1, Km # Ka is an edge-transitive circulant of the
form Cm(fa € Am | m doesn’t divide a and n doesn’t divide al)

Example: Ks " Ks = Ci5(1,2,4,7)

Proof: It was shown in Theorem 3.2 that complete graphs are edge-transitive,
s0 from Lemma 5.2 we know that the cardinal product of two complete
graphs is edge-transitive. In this case, each row heading is adjacent to every
other row heading, and each column heading is adjacent to every other
column heading. Thus a vertex in the product graph Ka A K. will be

adjacent to everything not in its own row and column. Examine the

complement: Kn* Ka. In the complement graph, each vertex will be adjacent
to every vertex in its own row or in its own column. All vertices in the same

row differ by multiples of m, and all vertices in the same row differ by
multiples of n.
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Therefore Kn* Ko = Cn({2a € Am | m divides a or n divides a})
and soKa A Ko = Cm(fa € Am | m doesn’t divide a and n doesn’t divide a}.

This theorem gives us the following family of edge-transitive circulants:

Cm({a € Am | m doesn’t divide a and n doesn’t divide a})

where ged(mn) =1 9)

In this theorem we generalize the previous two families to any two edge-

transitive circulants with relatively prime number of vertices.

Theorem 5.5: If gcd(m,n) = 1, Cu(a) is edge-transitive and Cu(b;) is edge-
transitive, then Cn(a) » Cu(b;) is an edge-transitive circulant of the form
Cm(la € Am | a=% ain + bym}).

Example: Ci(1,2) » Co(1,2) = Cas(1,5,10,13,14,17)

Proof: Examine a sample jump a’ from Cu(ai) and b’ from Cu(b;). These two
jumps will cause a vertex v to be adjacent to four vertices, those being {(v +
an+bm,v+an-bm,v-an+bm,v-an-bm). Two of these differ from
v by (a'n + b'm) and two differ by #(-a'n + b'm). These two formulas hold for
all possible jumps @ and b;. Therefore when the vertices are placed on a

circle, the graph is a circulant with all jumps of the form + an + bym.
This gives us our final family derived by the cartesian product:

If Cufa:) and Cu(b;) are edge transitive,
Cm(fa € Am | a=% ain + bym}) where ged(m,n) = 1 (10)

Note: Families 7 and 8 can be included into 9, but since they can be more |

easily recognized in circulant notation, they are considered separately.
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An Aside: The Cartesian Product
Another well known product of two graphs is the cartesian product. This

product is not useful for proving edge-transitivity, since the cartesian product
of two edge-transitive graphs is not necessarily edge-transitive, however it is

interesting to examine the cartesian product of certain circulants.

Definition 5.6: The cartesian product of two graphs Gi and Gz, written as
G: X (2, is defined as follows:
The vertices of Gi X G2 = V(Gi) x V(G2).
The edges of Gi X G: = {{((a,b)(c,d)) | a=c and (b,d) is an edge in Gz, or b=d

and (a,c) is an edge in Gi.

The following theorem is stated without proof, but can be visualized in the

same manner as theorems 5.3 through 5.5.

Theorem 5.7: ged(mn) =1
a) Co X Co= Cmn(l'fl,ﬂ)
b) Ko X Ki = Cm(f{a € Ams | m divides a or n divides a})
C) Cm(&) X Cn(bj)"—“ Cmn({a € Am [a=anora= bjm})

Note: Kn X Ku = Ku* Ka.
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Section 6. Circulants with a prime number of vertices

The family of edge-transitive circulants with a prime number of vertices
contains many interesting patterns. Unfortunately, the logic behind these
patterns and their proof remains unknown. Thus they will be stated here as
speculations. Recall that all cycle and complete graphs are edge-transitive
circulants, and also note that since p is prime, there are no multiple graphs in

this family.

Conjecture 1) Circulants with a prime number of vertices are edge-transitive
only if there exists an integer n which cyclically permutes the jump sequence

(as in Theorem 3.5).
Conjecture 2) Edge-transitive circulants with a prime number of vertices
have the property that the sum of the squares of the jumps is divisible by p.

For example: Ci3(1,3,4) is edge-transitive with 1+9+16 = 26 = 0 (mod 13).

Once again, these are speculations and call for further study. However, one

family of edge-transitive circulants was discovered.

Theorem 6.1: Given p is prime and a* + b® = 0 (mod p), Cs(a,b) is edge-

transitive.

Proof: Recall Zy is a field since p is prime. a’ + b* = 0 implies a*> = -b* and
aa =-bb. Soa =-a"bb. Let n= a"'b which implies that b = na. By substituting
n into the previous equation, a = -nb. Since n cyclically permutes the jump
sequence, Cy(a,b) is edge-transitive by Theorem 3.5.

Thus our final family of edge-transitive circulants is:

Cs(ab) where p is prime and a* + b” = 0 (mod p) (11)
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Section 7. Conclusion

We have introduced circulant graphs and their properties and have
provided a proof of Adam’s isomorphism theorem. We have found several
families of edge-transitive circulants using tools such as the set product and
cardinal product. Finally, we concluded with speculations on circulants with
a prime number of vertices.

While this compilation of families of edge-transitive circulants is by no
means comprehensive, it is a valuable tool not only for identifying a circulant
as edge-transitive, but for understanding the nature of edge-transitive

circulants.
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