A note on a superlinear elliptic Dirichlet problem

John M. Neuberger and Antonio R. Vargas

July 17, 2008

Abstract

We show that a special subset of solution candidates (called S_1) for a superlinear elliptic Dirichlet problem is path-connected. It was shown by Castro et al. in [2] that the element of this set that minimizes the action functional is a solution to the PDE and changes sign exactly once.

1 Introduction

In this section we introduce the context of the problem and define relevant formulae and sets. In Section 2 we state several lemmas required for the proof of the result. Lastly, we prove the path-connectedness of the set S_1 in Section 3.

We are concerned with the boundary value problem

$$\begin{cases} \Delta u + f(u) = 0 & \text{in } \Omega \\ u = 0 & \text{in } \partial \Omega \end{cases}$$
 (1)

where Δ is the Laplacian operator, Ω is a smooth subset of \mathbb{R}^n , and f has the following restrictions:

(a)
$$f \in C^1(\mathbb{R}, \mathbb{R}),$$

(b)
$$f'(u) > \frac{f(u)}{u}$$
 for $u \neq 0$,

(c)
$$\lim_{|u| \to \infty} \frac{f(u)}{u} = \infty$$
.

We also assume that if $0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \dots$ are the eigenvalues of $-\Delta$ then $f'(0) < \lambda_1$.

Let H be the Sobolev space $H_0^{1,2}(\Omega)$ with inner product

$$\langle u, v \rangle = \int_{\Omega} \nabla u \cdot \nabla v \ dx$$

(see [1]). We define the action functional $J: H \to \mathbb{R}$ by

$$J(u) = \int_{\Omega} \left\{ \frac{1}{2} |\nabla u|^2 - F(u) \right\} dx \tag{2}$$

where $F(u) = \int_0^u f(t)dt$. Next we calculate the directional derivative of J

$$J'(u)(v) = \langle \nabla J(u), v \rangle = \int_{\Omega} (\nabla u \cdot \nabla v - f(u)v) dx$$
 (3)

for all $v \in H$. Using integration by parts on (3) one can see that u is a weak (and, consequently, a classical) solution to (1) if and only if it is a critical point of (2). Finally we define $\gamma(u) = J'(u)(u), \ u_+(x) = \max\{u(x), 0\}$, and $u_-(x) = \min\{u(x), 0\}$ along with the sets

$$S = \{u \in H - \{0\} \mid \gamma(u) = 0\},$$

$$\hat{S} = \{u \in S \mid u_+, u_- \neq 0\}, \quad G^+ = \{u \in S \mid u > 0\},$$

$$S_1 = \{u \in \hat{S} \mid u_+, u_- \in S\}, \quad G^- = \{u \in S \mid u < 0\}.$$

Note that if u is a solution to (1) not identically zero then $u \in S$. Also, it should be stated that if u is in H then u_+ and u_- are also in H (see [3]).

It was proved in [2] that, under some additional restrictions on f, (1) has a positive solution, a negative solution, and a solution that changes sign exactly once. The sign changing solution is the element of S_1 that minimizes the action functional J.

2 Preliminary lemmas

Lemma 2.1. The function $h: H \to H$ defined by $h(u) = u_+$ is continuous.

Lemma 2.2. If $u \in H - \{0\}$ then there exists a unique $\bar{\lambda} = \bar{\lambda}(u) \in (0, \infty)$ such that $\lambda u \in S$.

Lemma 2.3. The function $\bar{\lambda} \in C^1(S^{\infty}, (0, \infty))$. The set S is closed, unbounded, and a connected C^1 -submanifold of h diffeomorphic to $S^{\infty} = \{u \in H \mid ||u|| = 1\}$.

We refer the reader to [2] for proofs of these lemmas.

3 Proof of result

Theorem 3.1. S_1 is path-connected.

Proof. Let u and v be elements in S_1 .

Case 1: There exist elements x and y in Ω such that u(x), v(x) > 0 and u(y), v(y) < 0. Take the convex linear combination

$$p(t) = (1 - t)u + tv.$$

Note that p(t) is sign-changing (and consequently nonzero) for $t \in [0, 1]$. We claim that $p(t)_+$ and $p(t)_-$ project onto the paths

$$\{\alpha(t)p(t)_+ \in G^+ \mid t \in [0,1]\}$$

and

$$\{\beta(t)p(t)_- \in G^- \mid t \in [0,1]\}$$

where $\alpha, \beta \in C([0,1], \mathbb{R}^+)$. This follows from the fact that p is continuous and from Lemmas 2.1 and 2.3. Define

$$q(t) = \alpha(t)p(t)_{+} + \beta(t)p(t)_{-}.$$

Note that $\alpha(t)p(t)_+$ and $\beta(t)p(t)_-$ have disjoint support and so

$$q(t)_{+} = \alpha(t)p(t)_{+},$$

$$q(t)_{-} = \beta(t)p(t)_{-}.$$

Since $q(t)_+$ is in G^+ and $q(t)_-$ is in G^- for $t \in [0,1]$, q(t) is in S_1 for $t \in [0,1]$. Further, q(0) = u and q(1) = v (from Lemma 2.2).

Case 2: There do not exist elements x and y in Ω such that u(x), v(x) > 0 and u(y), v(y) < 0. We aim to contruct a function $w \in S_1$ that satisfies the conditions of Case 1 for u and v. We would then construct a path as per above from u to w and then from w to v. That S_1 is path-connected would follow from such a construction.

First, take four distinct elements x_1 , x_2 , x_3 , and x_4 in Ω such that $u(x_1) > 0$, $v(x_2) > 0$, $u(x_3) < 0$, and $v(x_4) < 0$. By the continuity of the elements of H we can construct four disjoint open sets A_1 , A_2 , A_3 , and A_4 in Ω about the x_i such that:

- (a) $\forall x \in A_1, u(x) > 0$,
- (b) $\forall x \in A_2, v(x) > 0$,
- $(c) \quad \forall x \in A_3, u(x) < 0,$
- (d) $\forall x \in A_4, v(x) < 0.$

Construct a function $w^* \in H$ that is positive on A_1 and A_2 , negative on A_3 and A_4 , and any sign elsewhere. By Lemma 2.2 there exist unique constants $c_1, c_2 \in (0, \infty)$ such that $c_1w_+^*$ is in G^+ and $c_2w_-^*$ is in G^- . Define

$$w = c_1 w_+^* + c_2 w_-^*.$$

Since $c_1w_+^*$ and $c_2w_-^*$ have disjoint support, $w_+=c_1w_+^*$ and $w_-=c_2w_-^*$. It follows that w is in S_1 and meets the requirements of Case 1 for u and v. \square

References

- [1] R. A. Adams. Sobolev Spaces. Academic Press, New York, 1975.
- [2] A. Castro, J. Cossio, and J. M. Neuberger. A sign-changing solution for a superlinear Dirichlet problem. *Rocky Mountain Journal of Mathematics*, 27(4):1041–1053, 1997.
- [3] D. Kinderlehrer and G. Stampacchia. *Introduction to Variational Inequalities and Their Applications*. Academic Press, New York, 1979.