
Semi-Symmetric Graphs of Valence 5

Berkeley Churchill

March 2012

Abstract

A graph is semi-symmetric if it is regular and edge transitive but not
vertex transitive. The 3- and 4-valent semi-symmetric graphs are well-
studied. Several papers describe infinite families of such graphs and
their properties. 3-valent semi-symmetric graphs have been completely
classified up to 768 vertices. The goal of this project is to extend this
work to 5-valent semi-symmetric graphs. In this paper I present work
on searching for these graphs, and the construction of such a graph.

Contents

1 Introduction 1

2 Groups 2

3 Graphs 4

4 Groups and Graphs 7

5 Searching for Semi-Symmetric Graphs of Valence 5 11

6 Constructing a Semi-Symmetric Graph of Valence 5 14

7 Conclusion 16

A Source Code 17

1 Introduction

The study of semi-symmetric graphs started with Folkman’s 1967 paper
[Fol67] where he proved the smallest semi-symmetric graph had 20 vertices

1

and 40 edges, the so called Folkman graph. Additionally he showed that
any semi-symmetric graph must not have 2p or 2p2 vertices for p prime.
Since then, cubic and 4-valent semi-symmetric graphs have been studied
extensively. Cubic graphs have recently been completely classified up to 768
vertices [CMMP06]. Some authors have discovered 5-valent semi-symmetric
graphs. For example, in the process of constructing an infinite family of semi-
symmetric graphs with varying valences, Lazebnik and Raymond discovered
three 5-valent semi-symmetric graphs [LV02]. However, it does not appear
that any author has studdied valence 5 graphs in particular.

In this project I investigate the properties of semi-symmetric graphs of
valence 5. Sections 2 and 3 cover background material on group theory and
graph theory. This material may be safely skipped by any reader already
comforable with this material. Additional background in group theory may
be found in “Algebra” by Grove [Gro83]. More on graph theory can be found
in [AG07]. Section 4 includes background material on how graphs may be
analyzed via group theory; here group actions are applied to the graph,
and semi-symmetric graphs are defined. Most readers will benefit from the
material in this section, but again, it may be skipped by readers who are
already familiar with it. The remainder of the thesis is in two parts. First,
I describe computer search techniques used to find some semi-symmetric
graphs of valence 5, and then I provide a construction of such a graph.

2 Groups

Groups are of fundamental important throughout mathematics, especially in
the study of symmetry. To understand semi-symmetric graphs, we must be
able to describe relationships between different symmetries. Group theory
provides the necessary tools to do this. In the following discussion, I define
groups, group actions, and a few theorems necessary for our work. It is
assumed that the reader has a basic understanding of group theory and its
terminology, but it is covered here for reference.

Definition 2.1 (Groups). A group is a set equipped with a binary oper-
ation which is associative, has a two-sided identity and under which every
element has a two-sided inverse. This product is often called “multiplica-
tion” regardless of how it is actually defined. Multiplication is typically
denoted by concatenation. Subsets which are themselves groups under the
restriction of the binary operation are called subgroups. The notationH ≤ G

is used to indicate that H is a subgroup of G.

2

Examples of groups include the integers under addition and the nonzero
reals under multiplication. The finite cyclic groups Zn are an important
family of examples which are defined as the integers reduced modulo n under
addition modulo n.

Another important example is the symmetric group of a set X. This
is the group SymX formed by considering all bijections π : X → X under
the operation of function composition. Symmetric groups are used to define
group actions. Group actions describe the way a group can permute a set of
elements. For this research it is used to describe the way that a “symmetry”
or “automorphism” of a graph acts on its vertices.

The following theorem is useful in a wide variety of situations to bound
the size of subgroups of a group. This is an indispensable tool for determin-
ing the size of a group, or its subgroups.

Theorem 2.2 (Lagrange). If G is a group and H is a subgroup of G, then
|H| divides |G|.

Definition 2.3 (Cosets). Given a group G, a subgroup H and an element
g ∈ G, the set gH = {gh : h ∈ H} is called a left coset of H in G. Similarly
Hg = {hg : h ∈ H} is a right coset of H in G. The set of all left cosets of
H in G partition G into equivalence classes. The set is denoted by G/H.
The size of G/H is denoted by [G : H] and called the index of H in G. H

is called a normal subgroup if gH = Hg for all g ∈ G. In this case, G/H

is a group under the operation g1H · g2H = (g1g2)H, and this operation is
well-defined. The resulting group (G/H, ·) is called the quotient group.

Definition 2.4 (Kernels). Given two groups G and H, a function f : G →
H is called a group homomorphism if f(xy) = f(x)f(y) for all g ∈ G. A
bijective group homomorphism is called a group isomorphism. If f is a group
isomorphism from G to H then G and H are said to be isomorphic. This
is written as G ∼= H. The kernel of a morphism is the set ker f = {g ∈ G :
f(g) = 1H}. The kernel of a morphism is trivial exactly when the morphism
is injective.

Theorem 2.5 (Fundamental Homomorphism Theorem). Normal subgroups
are exactly the groups that are kernels of homomorphisms. In particular, if
f : G → H is a surjective group homomorphism, then G/ ker(f) ∼= H.

Definition 2.6 (Generating Set). Let G be a group, and S ⊂ G. The sub-
group of G generated by S is the intersection of all subgroups of G containing
H. This subgroup is denoted by �S�, and S is referred to as the generating
set for �S�. If H1, . . . , Hn are subgroups of G then �H1, . . . , Hn� denotes the
subgroup of G that is generated by their union.

3

The key application of groups to graphs is in the study of group actions.
The Orbit-Stabilizer theorem establishes an invaluable relationship used to
determine the sizes of sets under group actions.

Definition 2.7 (Group actions). Any group homomorphism φ : G → SymX

defines a group action of the group G on the set X. If g ∈ G and x ∈ X,
notation is typically condensed, and xg denotes φ(g)(x). Some authors
prefer to use a left group action, in which case gx is used to denote φ(g)(x).

Definition 2.8 (Orbits and Stabilizers). If G acts on a set X and x ∈ X

then the stabilizer of x in G is the set StabG(x) = {g ∈ G : xg = x}. This set
is a subgroup of G. The orbit of x in G is the set OrbG(x) = {xg : g ∈ G}.

Theorem 2.9 (Orbit-Stabilizer Theorem). If G is a group acting on a set
X and x ∈ X, then [G : StabG(x)] = |OrbG(x)|.

An important consequence of this theorem is the size of an orbit or
stabilizer always divides the size of the group. The orbits of X in G partition
X into equivalence classes. A group action is said to be transitive if there
is only one orbit. Equivalently, for all x, y ∈ X there exists a g ∈ G so that
y = xg. The action is termed regular if it is transitive and |G| = |X|.

3 Graphs

Graphs are useful for depicting networks and relations. They have far-
reaching applications within computer science and mathematics. It is as-
sumed that the reader does have a working knowledge of graph theory. This
section is especially in place to help control the plethora of definitions that
permeate the literature.

Definition 3.1 (Graphs). A graph is an ordered pair Γ = (V,E) where V is
any set and E is a collection of subsets of V so that |e| = 2 for each e ∈ E.
The set V is called the vertex set and E is called the edge set. V (Γ) and
E(Γ) denote the vertex- and edge sets for any graph Γ.

Note that many authors define a graph more generally to have loops,
multiple edges and/or directed edges. They would call a graph by the above
definition a “simple graph”. If Γ is a graph, v1, v2 ∈ V (Γ) then v1 and v2 are
called “vertices”. If {v1, v2} ∈ E(Γ) then v1 and v2 are said to be “adjacent”
or “neighbours”. Of course, we typically think of graphs by drawing pictures
vertices connected to other vertices by edges.

4

Definition 3.2 (Graph homomorphisms). Let Γ and ∆ be two graphs.
Let φ : Γ → ∆ be a function, by which we mean φ maps members of
V (Γ) to members of V (∆). If φ preserves vertex-adjacency, then we say
φ is a homomorphism. To be precise, φ is a homomorphism if and only if
v1, v2 ∈ V (Γ) are adjacent if and only if φ(v1),φ(v2) are adjacent in ∆. A
graph isomorphism φ is a bijective homomorphism. If φ : Γ → ∆ is an
isomorphism, we say that Γ and ∆ are isomorphic.

Like in many branches of mathematics, the notion of a homomorphism
of graphs corresponds to maps that are structure preserving. Similarly,
we have the notion that two graphs are identical, and share all the same
properties, if they are isomorphic. The following terms are part of the
standard vocabulary in graph theory.

Definition 3.3 (Regular Graph). A graph Γ is k-valent or k-regular if every
vertex has exactly k neighbours. Any such graph is called a regular graph.
A vertex v with k neighbours is said to have degree k.

Definition 3.4 (Bipartite). A graph Γ is bipartitie if each vertex may be
colored “black” or “white” so that no two vertices of the same color are
adjacent.

Example 3.5. The canonical example of a regular graph is the family of
complete graphs. The complete graph on n vertices is denotedKn. Its vertex
set has n elements, and there is an edge between every pair of vertices.

Example 3.6. Another family of graphs are the complete bipartite graphs.
The graph Kn,m has n white vertices and m black vertices such that every
white vertex u is adjacent to every black vertex v.

Definition 3.7 (Paths and Cycles). A path in Γ is a sequence of unique
vertices v0, v1, . . . , vn so that each vertex is adjacent to its successor and
predecessor. The vertex v0 is the initial vertex while vn is the final vertex.
If p is a path with initial vertex u and final vertex v then we say p is a u, v-
path. The graph Γ is connected if for each vertex u, v there is a u, v-path.
A cycle in Γ is a path except that the initial vertex and the final vertex are
the same. A path containing n vertices is called an n-cycle.

The following definitions and constructions are less standard.

Definition 3.8 (Worthy). A graph Γ is worthy if there are no two vertices
with the same neighbors. With the exception of K1 and K1,1, all complete
and complete bipartite graphs are worthy.

5

Given a graph Γ, its line graph is defined by turning its edges into ver-
tices, and its vertices into edges. The following definition makes this notion
precise.

Definition 3.9 (Line graphs). Suppose Γ = (V,E) is a graph. Let V � = E.
For any pair {e1, e2} of distinct edges in Γ, they are adjacent (as vertices)
in the line graph if and only if they were adjacent (as edges) in the original
graph. Using notation, {e1, e2} ∈ E

� if and only if |e1 ∩ e2| = 1. The graph
L(G) = (V �

, E
�) is called the line graph of Γ.

Contrary to intuition, if Γ is a graph then generally (and in fact, usually)
L(L(G)) �= G, as this next example demonstrates.

Example 3.10. In the figure below, on the left is the complete graph on
four vertices, K4. Its line graph, L(K4) is the octahedral graph on the right.
The vertices of K4 have been colored to match the corresponding edges in
its line graph.

3

2

1 4

{1,3} {3,4}

{2,3}

{2,4}{1,2}

{1,4}

In particular, notice that L(L(K4)) has 12 vertices, and so is not isomorphic
to K4. In general, if Γ is a graph, then L(Γ) has more edges than Γ has
vertices, even though L(Γ) has as many vertices as Γ has edges.

Voltage graphs are useful for describing a larger, derived graph, in terms
of a smaller graph. This is a very general construction which can be used
to construct large families of graphs easily.

Definition 3.11 (Voltage Graphs). A directed graph is a graph where each
edge has a direction. Formally, such an edge is represented by an ordered
pair of vertices. A multigraph is one where the edges form a multiset, so
there can be more than one edge between a pair of vertices. A weighted
graph is a graph Γ along with a function w : E(Γ) → Z.

Let n > 1 be a positive integer, and suppose ∆ is a directed, weighted
multigraph, where all the weights on the edges belong to the set Zn. Such a

6

graph is called a voltage graph. From voltage graphs we construct a derived
graph, Γ, as follows. Take V (Γ) = V (∆) × Zn. The vertices (v, s) and
(w, t) are adjacent if v and w are adjacent in ∆ and there is a directed
edge (v, w) ∈ E(∆) with weight t − s (computed in Zn). Following this
construction, we say that ∆ is a voltage graph for Γ, or equivalently, that
Γ is the derived graph of ∆. More generally, Zn may be replaced with any
group, however this is unnecessary for this work.

Definition 3.12 (Cayley Graphs). Let G be a group and S ⊂ G be an
arbitrary subset. Define Γ = Cay(G,S) to be a graph with V (Γ) = G and
E(Γ) = {{g, gs}|g ∈ G, s ∈ S}. An edge {g, gs} is said to be colored by s.

4 Groups and Graphs

The key relationship between groups and graphs is symmetry. Graphs have
symmetry, and groups study it! The following construction is a starting
point for their interaction.

Definition 4.1 (Automorphism group). Let Γ be a graph, and let S be the
set of all graph isomorphisms φ : Γ → Γ. These isomorphisms are called
graph automorphisms or sometimes symmetries. (S, ◦) is a group, where ◦
denotes function composition. This group is called the automorphism group
of Γ and is denoted by Aut(Γ). If Γ is bipartite, we also define Aut+(Γ) to
be the set of all color-preserving automorphisms, that is automorphisms φ

such that φ(v) is the same color v for all vertices in Γ.

Notice that Aut(Γ) naturally acts on both V (Γ) and E(Γ). For any
φ ∈ Aut(Γ), vertex v ∈ V (Γ), the obvious action is to apply φ to v! The
automorphism map can also be applied to an edge of Γ to get another edge
of Γ. This action is adjacency preserving; that is exactly the definition of a
graph homomorphism.

Therefore, we can consider the orbits and stabilizers of vertices and edges
in Γ under the action of G = Aut(Γ). The graph is vertex transitive if
G acts transitively on the vertices of Γ. Similarly, it is edge transitive if
G acts transitively on the vertices. A graph is dart transitive if for any
two pairs of adjacent vertices (s, t) and (u, v) there exists g ∈ G so that
(s, t) = (ug, vg) = (u, v)g. This is stronger than edge-transitivity.

Intuitively, two vertices belonging to the same orbit under G “look” the
same. Specifically, if φ ∈ G and v ∈ V (Γ) then vφ has all the same local
properties that v does. For example, the valence of v is the same as vφ. The

7

Edge Transitive

Bitransitive Not Vertex Transitive

Strongly Bitransitive

Bipartite

Regular

Semi-Symmetric

Figure 4.1: Relationships between different definitions related to transitivity
and symmetry.

same comment applies to edges; if e ∈ E(Γ) the eφ and e share properties
local to those edges.

The Orbit-Stabilizer theorem (Theorem 2.9) guarantees that if Γ is ver-
tex transitive, then the number of vertices of Γ divides the size of its auto-
morphism group. Similarly, if Γ is edge transitive, then the number of edges
must divide the size of the automorphism group. Essentially, being edge or
vertex transitive guarantees the graph has many symmetries.

Let Γ be an edge transitive graph. Γ is called symmetric if it is dart and
vertex transitive. It is 1

2 -arc transitive if it is vertex transitive but not dart
transitive. It is strongly bitransitive if it is not vertex nor dart transitive.
Strongly bitransitive graphs are exactly those bipartite and edge transitive
graphs for which Aut(Γ) �= Aut+(Γ). A graph is semi-symmetric if it is
regular and strongly bitransitive.

Equivalently stated, a semi-symmetric graph is one that is regular and
edge transitive but not vertex transitive. These relations are depicted in
Figure 4.1.

Proposition 4.2. Every edge transitive graph is symmetric, 1
2 -arc transitive

or strongly bitransitive. In particular, there are no edge transitive graphs that
are dart transitive but not vertex transitive.

Definition 4.3 (Semisymmetric). A graph Γ is semi-symmetric if it is reg-
ular and edge transitive but not vertex transitive.

Proposition 4.4. Strongly bitransitive graphs, including semi-symmetric
graphs, are bipartite.

Theorem 4.5 (Folkman). The smallest semi-symmetric graph is the 4-
valent Folkman graph on 20 vertices. See figure 4.2.

8

Figure 4.2: The Folkman Graph [Epp08]

In general, semi-symmetric graphs are sparse. Folkman initiated the
study of these graphs with the Folkman graph [Fol67]. Many researchers
since have sought to classify semi-symmetric graphs. One of the most
remarkable accomplishments has been the classification of 3-valent semi-
symmetric graphs with up to 768 vertices [CMMP06]. There are only 43
such graphs. The smallest is the Grey graph on 54 vertices. The goal of this
project is to expand the work on semi-symmetric graphs to higher valences,
starting with five valent graphs. Important questions include “what is the
smallest 5-valent semi-symmetric graph?” and identifying infinite families
of 5-valent semi-symmetric graphs.

4.1 The Bi-Coset Construction

Definition 4.6 (Bitransitive). A graph Γ is bitransitive if it is edge transi-
tive and bipartite.

By Proposition 4.4, we are guaranteed that all semi-symmetric graphs
are bitransitive. Now I will introduce a particular method to construct
bitransitive graphs from groups. This is called the bicoset construction. This
construction is invaluable because all bitransitive graphs may be derived
from it.

Definition 4.7. Let G be a group and H,K subgroups of G. The bicoset
graph, bcc(G;H,K), is a bipartite graph defined as follows. Let the set G/H

be the black vertices and G/K the white vertices. Two vertices (which are
themselves equivalence classes) are adjacent if their intersection is nonempty.
This construction has a number of nice properties, stated below as proposi-
tions, some of which are proved.

9

Proposition 4.8 (Bi-coset Construction). For every group G with sub-
groups H and K, the bicoset graph bcc(G;H,K) is bitransitive.

Proposition 4.9 (Connectivity). Let G be a group with subgroups H and
K. The bicoset graph bcc(G;H,K) is connected iff H and K generate G.

Proposition 4.10. The valence of a coset of H is given by [H : H ∩ K].
Similarly the valence of a coset of K is given by [K : H ∩K].

Proof. Let Γ = bcc(G;H,K). Let L = H∩K. One can construct a bijection
f from cosets in G/L to the edges of Γ as follows. Let f(Lg) = {Hg,Kg}.
This is well defined since if Lg1 = Lg2 then both Hg1 = Hg2 and Kg1 =
Kg2. The map is surjective because each edge is of the form {Hg,Kg} for
some g ∈ G, so f(Lg) = {Hg,Kg}. To see that f is injective, suppose
that f(Lg1) = f(Lg2). Then Hg1 = Hg2 and Kg1 = Kg2. This implies
Hg1 ∩ Kg1 = Hg2 ∩ Kg2 so Lg1 = Lg2. This bijection demonstrates that
|E(Γ)| = [G : L].

The valence of each black vertex (a coset of H in G) is constant since Γ
is bitransitive. There are [G : H] black vertices. Therefore each black vertex
is adjacent to exactly [G : L]/[G : H] = [H : L] edges. The same argument
establishes that the valence of a coset of K is given by [K : L].

Corollary 4.11. Γ = bcc(G;H,K) is regular if and only if |H| = |K|. Γ is
5-valent if [H : H ∩K] = [K : H ∩K] = 5.

Proposition 4.12. If Γ is bitransitive then there exist groups G,H,K such
that Γ ∼= bcc(G;H,K).

Proof. Suppose Γ is a bitransitive graph, and let G = Aut+(Γ). Pick a
white vertex u adjacent to a black vertex v. Let H and K be the stabilizers
of these two vertices, respectively, under the action of G. We will see that
Γ ∼= bcc(G;H,K).

If u� is any white vertex, there exists g such that ug = u
�. For fixed

u
�, the set of all g with this property is exactly a coset of H, namely {t ∈

G|ut = u
�} = Hg. Similarly, if v� is any black vertex, there exists g� so that

vg
� = v

� and {t ∈ G|vt = v
�} = Kg

�.
Let φ : Γ → bcc(G;H,K) be defined as follows. If u� ∈ V (Γ) is white,

then φ(u�) = {t ∈ G|ut = u
�}. If v� ∈ V (Γ) is black then φ(v�) = {t ∈ G|vt =

v
�}. These are exactly cosets of H and K as we have just shown. To see φ

is a graph isomorphism, suppose u� and v
� are adjacent in Γ. Since Γ is edge

transitive, there exists a g ∈ G such that u
� = ug and v

� = vg. Therefore,

10

g ∈ φ(u�) and g ∈ φ(v�), so φ(u�) ∩ φ(v�) is nonempty. This implies φ(u�)
and φ(v�) are adjacent.

Finally, observe that φ is injective: if {t ∈ G|ut = u
�} = {t ∈ G|ut = u

��}
then certainly u

� = u
��. If Hg is some coset of H, then φ(ug) = {t ∈ G|ut =

ug} = Hg, so φ is surjective. Hence φ is a graph isomorphism.

5 Searching for Semi-Symmetric Graphs of Va-

lence 5

I searched for 5-valent semi-symmetric graphs programatically via the bi-
coset construction. The computer algebra system Magma comes with a
database of groups suitable for this. The algorithm I used is as follows.

1. Pick a group G from a database of groups.

2. For each subgroup H ≤ G, do:

(a) For each conjugacy class of subgroups of G, pick a representative
K so that [H : H ∩ K] = [K : H ∩ K] = 5 and �H,K� = G, if
possible.

(b) For each K, construct Γ = bcc(G;H,K).

(c) If Γ is not vertex transitive, then append it to the output.

Using this algorithm, I found three graphs of interest. The graphs had
120, 240 and 250 vertices. Of these, only the one with 250 vertices was pre-
viously known; it was constructed by Lazebnik in [LV02]. Details on these
graphs, including complete descriptions via adjacency lists in various for-
mats, may be found at http://www.berkeleychurchill.com/research/census.
Source code I used is in appendix section 1.2.

I completed this procedure for every finite group with |G| ≤ 1200. It
is possible that the graphs I found were not the smallest ones. Indeed, the
automorphism group of the Folkman graph has 3840 elements while the
graph itself has only 20 vertices. In comparison, there are also two non-
isomorphic semi-symmetric graphs on 40 vertices with valence four whose
automorphism groups have only 80 elements. An obvious objective is to
describe which graphs this computer search has missed.

One special case is of graphs whose color preserving automorphism groups
contain a subgroup H so that H acts regularly on the edges. I say such a
graph is edge regular. A graph Γ is edge regular if and only if there is a
subgroup H of Aut(Γ) so that StabH(e) = 1 for each e ∈ E(Γ). If Γ were

11

semi-symmetric and edge regular, then the corresponding H could be used
to construct Γ; namely, bcc(H, StabH(v), StabH(w)) ∼= Γ where v is any
white vertex and w is any black vertex. Thus, I have found all three of the
edge regular semi-symmetric graphs of valence 5 with less than 1200 edges.
The following theorem provides a description of the exact kind of graphs
these are.

Theorem 5.1. A connected bitransitive graph ∆ is edge regular if and only
if there exists a group G and a subset S ⊂ G such that Γ = L(∆) ∼= Cay(G, s)

To prove this theorem, a few lemmas are necessary. The first lemma is
used to show the first direction, while the second lemma shows the converse.

Lemma 5.2. If G is a group with subgroups H and K so that H ∩K = 1
and �H,K� = G, then L(bcc(G;H,K)) ∼= Cay(G,H ∪K\{1}).

Proof. Let ∆ = bcc(G;H,K) and Γ = L(∆). Then the vertices of Γ are
the edges of bcc(G;H,K), which is exactly the set of cosets G/(H ∩ K).
Hence, there is one vertex of Γ per member of G, and these vertices can be
labeled as members of G. If g1, g2 are two distinct vertices, then they are
adjacent if and only if g1 and g2 share a vertex in the bicoset construction.
This happens when g1 and g2 either belong to the same coset of H in G or
they belong to the same coset of K in G. That is, if g2g

−1
1 ∈ H ∪K\{1}.

So, g2 may be written as xg1 for some x ∈ H ∪ K\{1}. Therefore, every
edge of Γ is of the form {g, xg} with g ∈ G. This set of edges is exactly the
set of edges in Cay(G,H ∪K\{1}). The isomorphism is the identity.

Lemma 5.3. If ∆ is a connected bipartite graph, Γ = L(∆) and G is a sub-
group of Aut(Γ) then G acts as a group of automorphisms on ∆. Moreover,
G acts on V (Γ) exactly as it does on E(∆).

Proof. Since ∆ is bi-partite its vertices may be colored black and white.
This induces a non-proper 2-coloring of the edges of Γ. When discussing
colored edges, these edges must be members of E(Γ). When discussing
colored vertices, these vertices are in V (∆). Notice that every vertex v of ∆
with degree d > 1 has a corresponding d-clique in Γ and every edge of this
d-clique has the same color as v.

Consider any d-clique K in Γ for some d > 1. Suppose every edge of
K is the same color. Then there are d edges in ∆ that are each pairwise
adjacent. Consider the subgraph H of ∆ containing these edges and the
vertices that are adjacent to more than one edge. H must be connected and
bi-partite. Therefore if H contains more than one vertex there must be two

12

colors of vertices, so K contains two colors of edges. This contradicts our
premise. Therefore if all the edges of K are the same color, these edges all
correspond to a single vertex in ∆.

Now suppose thatK has both black and white edges. This never happens
when d ≤ 2. Consider the case when d ≥ 3. Pick a 3-clique subgraph of K
and call it K �. It has three edges. By pigeonhole principle, at least two edges
have the same color. Without loss of generality, suppose there is one white
and two black edges. Again consider the connected bi-partite subgraph H

of ∆ consisting of the corresponding three edges and all vertices that are
adjacent to more than one of them. There must be at least one black and
one white vertex in this subgraph. Case 1: These are the only two vertices
in H. However there are three edges, which implies that H has a multi-edge
or H is a path graph, either of which is a contradiction. Case 2: There are
three vertices in H, two of which are black and one is white. Then these is
a 1-1 correspondence between these vertices and the edges of K. Hence the
two black vertices must be adjacent, which contradicts the proper coloring
of ∆. Therefore it is impossible for K to have both black and white edges.

Hence every clique, including 2-cliques, of Γ has a distinct color and
corresponds to a subset of edges adjacent to a vertex of ∆. Let U be the
set of maximal cliques in Γ, that is, the cliques which are not subgraphs
of a larger clique. The black and white maximal cliques each form a block
system. To see this, suppose (u1, u2) ∈ K1 and K1 is a maximal black d-
clique. Then (u1, u2) is part of exactly one maximal d-clique, so if g ∈ G then
(u1, u2)g = (v1, v2) must be part of another maximal d-clique, K2. It follows
that all the other edges and vertices in K1 must map into K2. Note that
K1 and K2 need not have the same color if ∆ is regular. Also observe that
if K1 and K3 are vertex-adjacent then K1g and K3g are vertex-adjacent.

U is in one-to-one correspondence with the vertices of ∆. In addition,
this correspondence preserves vertex-adjacencies in U with edge-adjacencies
in ∆. Therefore G acts on ∆.

Finally, the proof of theorem 5.1 follows.

Proof. First, suppose ∆ is edge regular. Let G be a subgroup of Aut(∆)
that acts regularly on the edges. Let H and K be the vertex stabilizers of
an adjacent black and white vertex, repectively. By the argument in Propo-
sition 4.12, ∆ ∼= bcc(G;H,K). Moreover, by Proposition 4.9 we know that
H and K generate G since ∆ is connected. Finally, Lemma 5.2 establishes
that Γ = L(∆) ∼= Cay(G,H ∪K\{1}.

13

In the other direction, suppose Γ ∼= Cay(G,S). Then G acts regularly
on the vertices of Cay(G,S). By the correspondence illustrated in Lemma
5.3, G acts on ∆ and regularly on its edges.

6 Constructing a Semi-Symmetric Graph of Va-

lence 5

The majority of my effort has gone toward providing a combinatorial de-
scription of the graph on 120 vertices, and proving it is semi-symmetric, and
generalizing it to an infinite family. The most useful representation of this
graph has been a voltage graph. This voltage graph may be constructed
as follows. Start with the graph of an icosahedron. Replace each vertex of
the icosahedron with a white vertex and a black vertex. In this new graph,
two vertices are adjacent if and only if they are of different colors and they
correspond to adjacent vertices in the original icosahedral graph. This is a
standard construction, and is called the bipartite double cover of the icosa-
hedron. Pick an orientation on this graph, that is, pick a direction for each
edge so it is now a directed graph. Call this graph ∆.

Set n = 5. We will construct weights for the edges of ∆ so that ∆ is
a voltage graph for the semi-symmetric graph on 120 vertices. For each
edge (u, v) ∈ E(∆) let x(u,v) ∈ Z5 denote its weight. Note one may freely
use x(v,u) = −x(u,v). We will construct a system of equations to solve for
these values. I call a pair of black and white vertices in ∆ friends if they
correspond to the same vertex in the icosahedral graph. Let A,B,C be
black vertices with friends X,Y, Z, respectively, so that A, Y,C,X,B,Z is
a 6-cycle in ∆. Re-name these vertices so that the cycle moves clockwise
around the face of the icosahedron. This cycle corresponds to a triangle in
the icosahedral graph. Introduce the equation

x(A,Y) + x(Y,C) + x(C,X) + x(X,B) + x(B,Z) + x(Z,A) = 1

into the system. Consider a 4-cycle A,X,B, Y where A and B are black
vertices and X and Y are white vertices. Ensure that this cycle is traversed
counter-clockwise. There are two cases. If A and B are adjacent as vertices
in the icosahedral graph, then introduce the equation

x(A,X) + x(X,B) + x(B,Y) + x(Y,A) = 1.

Otherwise, X and Y will be adjacent in the icosahedral graph, and one
should introduce

14

x(A,X) + x(X,B) + x(B,Y) + x(Y,A) = 2.

These equations are enough to fully determine the structure of the graph,
as described in the following theorem.

Theorem 6.1. Any solution to the above system yields a voltage graph on
∆, and the corresponding derived graphs are all isomorphic to the same
semi-symmetric graph on 120 vertices.

Proof. The proof of this theorem is in three parts. First I argue that any
two solutions yield isomorphic graphs. Then I show that this graph is edge
transitive using a symmetry argument. Finally, it is not vertex transitive
because some white vertices are distance six from one another, while black
vertices are at most four apart.

A particular assignment of voltages corresponding to the graph with 120
vertices may be written as a vector. The set of all such voltages forms an
affine space where elements may be written as a+w, where a is a vector of
starting voltages, and w is a member of a vector space W which represents
a transformation to this set of voltages. I will show that for any voltage
graph on ∆, the space W is at least 23 dimensional.

Suppose you have a set of voltages. Then, for a particular vertex v in the
voltage graph, you can relabel (“pop”) the derived vertices with the map
(v, i) �→ (v, i + 1). This corresponds to increasing the voltages on all the
incoming edges in the voltage graph by one, and decreasing the voltage on
the outgoing edges. Each of these is a transformation in W , so W contains
at least 24 vectors. Of course, popping every vertex causes no change in
the labeling of the graph, so these 24 vectors are not linearly independent.
However, any 23 of them are.

To see that 23 of them are linearly independent, pick any minimal span-
ning tree of the voltage graph, and assign new weights to each edge. Pick
one vertex to not pop. Then, working along each edge of the tree, each other
vertex must be popped a unique number of times; i.e., there’s exactly one
linear combination of the other 23 vectors that gives this voltage. So, W
has dimension at least 23.

Write the system of equations above in the form Ax = b. Every x sat-
isfying Ax = 0 is a transformation of the voltages. Every “popping” vector
found above satisfies the systems. This is easy to see because in each cycle
there are as many in-edges as there are out-edges at each vertex. If each
in-edge is incremented by one and each out-edge is decremented by one, then
one can check that each equation stays invariant. These vectors form a 23

15

dimensional subspace of kerA. It turns out that, by computer computation,
that kerA has dimension exactly 23. The matrix corresponding to the sys-
tem was explicitly computed. This code can be found in appendix section
1.1.

Let y and y
� be solutions to Ax = b. Then y−y

� ∈ kerA. This means that
y can be reached from y

� by a series of popping vertices. Hence, the derived
graph corresponding to y is isomorphic to the derived graph corresponding
to y

�. This concludes the first part of the proof.
Any rigid symmetry of the icosahedron is also a symmetry of the space

of solutions to the voltage equations. This is clear because any symmetry
of the icosahedron maps rhombi to rhombi and triangles to triangles while
preserving orientation. Consider any two edges, e1, e2 in the derived graph,
Γ. Write e1 = (f1, i) and e2 = (f2, j) where f1 and f2 are the corresponding
edges in ∆. The graph ∆ is edge transitive under rigid motions, so there is
some automorphism φ of ∆ which maps f1 to f2. This map permutes the
voltages and yields a new voltage graph ∆�. Since the system of equations is
preserved under rigid symmetries, the derived graph of ∆� is still isomorphic
to Γ. This naturally induces an automorphism of Γ which sends (f1, i) to
(f2, i). Composing this with the map that sends (f, t) to (f, t+ j − i) yields
an automorphism sending e1 to e2. Hence, Γ is edge transitive.

Finally, one can manually check (or use a computer), that the distance
between any two black vertices is no more than four. However, antipo-
dal white vertices can be distance six apart. Therefore, there is no au-
tomorphism taking black vertices to white vertices, so the derived graph
is not vertex transitive. Thus, the derived graphs are 5-valent and semi-
symmetric.

7 Conclusion

Hopefully one can generalize the construction provided in this paper to find
a family of 5 valent semi-symmetric graphs. By solving systems of equations
similar to that in Section 6, it should be easy to find several examples of
candidate edge transitive graphs. However, determining which of these will
not be vertex transitive will be harder. Future work on this project will
hopefully include identifying an infinite family of these graphs.

16

References

[AG07] Geir Agnarsson and Raymond Greenlaw, Graph theory: Model-
ing, applicatons and algorithms, Pearson Prentice Hall, 2007.

[CMMP06] Marston Conder, Aleksander Malnic, Dragan Marusic, and
Primz Potocnik, A census of semisymmetric cubic graphs on up
to 768 vertices, Journal of Algebraic Combinatorics 23 (2006),
no. 3, 255–294.

[Epp08] David Eppstein, The Folkman graph, the smallest semi-
symmetric graph, discovered in 1967 by J. Folkman., Public Do-
main Image, April 2008.

[Fol67] Jon Folkman, Regular line-symmetric graphs, Journal of Com-
binatorial Theory 3 (1967), no. 3, 215 – 232.

[Gro83] Larry C. Grove, Algebra, Academic Press, 1983.

[LV02] Felix Lazebnik and Raymond Viglione, An infinite series of reg-
ular edge- but not vertex-transitive graphs, Journal of Graph
Theory 41 (2002), no. 4, 249–258.

A Source Code

Computations were vital to discovering 5-valent semi-symmetric graphs and
providing their mathematical construction. A haskell program was used to
transform the system of equations in Section 6 into a matrix. The resulting
matrix was used to calculate the kernel using the computer algebra system
Sage. Additionally, code to search for semi-symmetric graphs was written
in magma. Included is the source code for both programs.

1.1 Haskell Source

{- Modules -}

import Data.List

{- Constructors -}

data Point = Point Expr Expr Expr Bool deriving (Eq,Show,Ord)

17

data Expr = Expr Rational Rational deriving (Eq,Show,Ord)

{- Expressions in Q[Phi] -}

zero = Expr 0 0

one = Expr 1 0

phi = Expr 0 1

mone = Expr (-1) 0

mphi = Expr 0 (-1)

times :: Expr -> Expr -> Expr

times (Expr a b) (Expr c d) = Expr (a*c + b*d) (b*c + a*d + b*d)

plus :: Expr -> Expr -> Expr

plus (Expr a b) (Expr c d) = Expr (a + c) (b + d)

neg :: Expr -> Expr

neg (Expr a b) = Expr (-a) (-b)

minus :: Expr -> Expr -> Expr

minus u v = plus u (neg v)

times_c :: Expr -> Rational -> Expr

times_c (Expr a b) c = Expr (a*c) (b*c)

divide :: Expr -> Expr -> Maybe Expr

divide _ (Expr 0 0) = Nothing

divide (Expr a b) (Expr c 0) = Just $ Expr (a/c) (b/c)

divide x y = divide (times x (conj y)) (times y (conj y))

where conj :: Expr -> Expr

conj (Expr u v) = Expr ((-u) -v) v

sq :: Expr -> Expr

sq u = times u u

to_flt :: Expr -> Rational

to_flt (Expr a b) = a + b*(1 + (toRational (sqrt 5)))*(1/2)

{- Points -}

same_color :: Point -> Point -> Bool

18

same_color (Point _ _ _ x) (Point _ _ _ y) = (x == y)

adjacent :: Point -> Point -> Bool

adjacent x y = (not (same_color x y)) && (norm_dist x y == Expr 4 0)

adjacent_nc :: Point -> Point -> Bool

adjacent_nc x y = (norm_dist x y == Expr 4 0)

adjacency_list :: Point -> [Point]

adjacency_list x = [y | y <- nodes, adjacent x y]

adjacency_list_large :: Point -> [Point]

adjacency_list_large x = [y | y <- nodes, adjacent_nc x y]

triangle :: Point -> Point -> Point -> Bool

triangle x y z = (adjacent x y) && (adjacent y z) && (adjacent z x)

label_expr :: Expr -> String

label_expr (Expr 1 0) = "A"

label_expr (Expr (-1) 0) = "B"

label_expr (Expr 0 1) = "P"

label_expr (Expr 0 (-1)) = "Q"

label_expr (Expr 0 0) = "Z"

label :: Point -> Int

label p = locate nodes p

{-(foldr (++) "" (map label_expr [x,y,z])) ++

(if s then "-W" else "-B")-}

label2 :: [Point] -> [Int]

label2 t = map (\x -> label x) t

label3 :: [[Point]] -> [[Int]]

label3 t = map (\x -> label2 x) t

{- Geometry of Points -}

-- functor for binary operations

efmap :: (Expr -> Expr -> Expr) -> (Point -> Point -> Point)

efmap f = \x -> (\y ->

19

let Point x1 x2 x3 _ = x

Point y1 y2 y3 _ = y

in Point (f x1 y1) (f x2 y2) (f x3 y3) False)

-- pointwise binary operations

p_plus :: Point -> Point -> Point

p_plus = efmap $ plus

p_minus :: Point -> Point -> Point

p_minus = efmap $ minus

p_times :: Point -> Point -> Point

p_times = efmap $ times

-- distances

norm :: Point -> Expr

norm (Point a b c _) = foldl plus (Expr 0 0)

(map (\x -> sq x) [a,b,c])

norm_dist :: Point -> Point -> Expr

norm_dist u v = norm (p_minus u v)

-- products

cross :: Point -> Point -> Point

cross (Point x1 x2 x3 s) (Point y1 y2 y3 t) = Point z1 z2 z3 (not (s == t))

where z1 = (minus (times x2 y3) (times x3 y2))

z2 = (minus (times x3 y1) (times x1 y3))

z3 = (minus (times x1 y2) (times x2 y1))

dot :: Point -> Point -> Expr

dot u v = let (Point a b c _) = (p_times) u v

in plus a (plus b c)

-- angles

mycos :: Point -> Point -> Point -> Expr

mycos u v w= times_c (dot (p_minus w v) (p_minus v u)) (1/4)

sin2 :: Point -> Point -> Point -> Expr

sin2 u v w= times_c (norm (cross (p_minus w v) (p_minus v u))) (1/16)

20

-- there must be a better way to do this with a functor.

p_times_c :: Point -> Rational -> Point

p_times_c (Point x1 x2 x3 b) r = (Point (times_c x1 r)

(times_c x2 r) (times_c x3 r) b)

average :: Point -> Point -> Point -> Point

average s t u | (mycos s t u) == Expr ((-1)/2) 0 =

p_times_c (p_plus s (p_plus t u)) (1/3)

| (mycos s t u) == Expr ((-1/2)) (1/2) =

let adj = adjacency_list_large in

head $ intersect (adj s) (intersect (adj t) (adj u))

cw :: Point -> Point -> Point -> Bool

cw s t u = let Point a1 a2 a3 _ = average s t u

Point c1 c2 c3 _ = cross (p_minus t s) (p_minus u t)

b1 = divide a1 c1

b2 = divide a2 c2

b3 = divide a3 c3

in foldl (&&) (True)

(map (\x -> if x == Nothing then True else

(let Just y = x in (to_flt y > 0)))

[b1,b2,b3])

{- Nodes -}

nodes :: [Point]

nodes = quicksort [x y | x <- ico_node, y <- [True, False]]

where ico_node = type1 ++ type2 ++ type3

type1 = [Point zero s t | s <- [one, mone], t <- [phi,mphi]]

type2 = [Point t zero s | s <- [one, mone], t <- [phi,mphi]]

type3 = [Point s t zero | s <- [one, mone], t <- [phi,mphi]]

rhombi4 :: Int -> [[Point]]

rhombi4 1 = map (\x -> [x]) nodes

rhombi4 n = [old ++ [x] | old <- (rhombi4 (n-1)), x <- nodes,

(x > (head old)),

(adjacent (x) (last old)),

(not (elem x old)),

if n > 2 then cw (almost_last old) (last old) x

else True]

21

rhombi4’ = map (reverse) (filter (\x -> adjacent (head x) (last x))

(rhombi4 4))

rhombi_black_adj :: [Point] -> Bool

rhombi_black_adj [a,b,c,d] = let (Point _ _ _ color) = a in

if color == False then adjacent_nc a c

--a,c black

else adjacent_nc b d

--b,d black

rhombi4b :: [[Point]]

rhombi4b = filter (rhombi_black_adj) (rhombi4’)

rhombi4w :: [[Point]]

rhombi4w = filter (not . rhombi_black_adj) (rhombi4’)

triangles6 :: Int -> [[Point]]

triangles6 1 = map (\x -> [x]) nodes

triangles6 n = [old ++ [x] | old <- (triangles6 (n-1)), x <- nodes,

(x > (head old)),

-- not the smallest one in the list

(adjacent (x) (last old)),

-- strongly adjacent to last thing

(not (elem x old)),

-- not something already there

if n > 2 then cw (almost_last old) (last old) x

else True] --going cw

triangles6’ :: [[Point]]

triangles6’ =

let triangles6’’ = triangles6 6

triangles6’’’ = (filter (\x -> adjacent (head x) (last x))

(triangles6’’))

triangles6’4 = (filter (\x -> cw (last x) (head x)

(head (tail x))) triangles6’’’)

triangles6’5 = (filter (\x -> cw (almost_last x)

(last x) (head x)) triangles6’4)

in triangles6’5

22

{- Utility Functions -}

locate :: (Eq a) => [a] -> a -> Int

locate l v = locate’ 0 l v

where locate’ n [] v = -1

locate’ n (x:xs) v = if v == x then n

else locate’ (n+1) xs v

rotatel :: Int -> [a] -> [a]

rotatel 0 l = l

rotatel n (x:xs) = rotatel (n-1) (xs ++ [x])

rotate :: (Eq a, Ord a) => [a] -> [a]

rotate l = rotatel (locate l (find_min l)) l

find_min :: (Ord a) => [a] -> a

find_min [x] = x

find_min (x:xs) = min x (find_min xs)

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) = (quicksort start) ++ [x] ++ (quicksort end)

where start = [y | y <- xs, y <= x]

end = [y | y <- xs, y > x]

uniq :: (Ord a) => [a] -> [a]

uniq [] = []

uniq (x:xs) = if elem x xs then uniq xs else x : uniq xs

almost_last :: [a] -> a

almost_last l = head $ tail $ reverse l

{- Print the Answer ! -}

node_number :: Point -> Int

node_number p = locate nodes p

edges :: [(Int, Int)]

edges = [(a, b) | a <- [0..23], b <- [(a+1)..23],

adjacent (nodes !! a) (nodes !! b)]

23

nedges :: Int

nedges = length edges

edge_number :: Int -> Int -> Int

edge_number x y = locate edges ((x, y))

edge_number’ :: Point -> Point -> (Int, Bool)

edge_number’ x y = let a = node_number x

b = node_number y

c = edge_number (min a b) (max a b)

in if (a < b) then (c,False) else (c,True)

node_to_edge_list :: [Point] -> [(Int, Bool)]

node_to_edge_list (x:xs) = (edge_number’ (last xs) x) : node_to_edge_list’

(x:xs)

where node_to_edge_list’ :: [Point] -> [(Int, Bool)]

node_to_edge_list’ [x] = []

node_to_edge_list’ (x:xs) = (let y = head xs in

(edge_number’ x y) :

(node_to_edge_list’

(y:tail xs)))

edge_list_to_string :: [(Int, Bool)] -> String

edge_list_to_string l = (intercalate ","

(map (\x -> if (lookup x l == Nothing) then "0"

else (if (lookup x l == Just True) then "1" else "4"))

[0..(nedges-1)]))

make_matrix :: [String] -> IO()

make_matrix l = putStr ((foldl1 (\x y -> x ++ "," ++ y) l))

main :: IO()

main = make_matrix $ map (edge_list_to_string . node_to_edge_list)

(triangles6’ ++ rhombi4w ++ rhombi4b)

24

1.2 Magma Source

/*

Inputs: G, a groub

H, K subgroups of G

Outputs:

The bicoset construction graph.

*/

bcc:=function(G,H,K)

es := {};

H_coset_count := Index(G,H);

K_coset_count := Index(G,K);

vertex_count := H_coset_count + K_coset_count;

L := H meet K;

if Order(L) ne 1 then

LReps := Transversal(G,L);

else

LReps := G;

end if;

TH := CosetTable(G,H);

TK := CosetTable(G,K);

i:=0;

// loop through representatives of G/L

for g in LReps do

Include(~es,{TH(1,g),H_coset_count+TK(1,g)});

end for;

X:=Graph< vertex_count | es>;

return X;

end function;

/* Inputs: G, a group

H,K, subgroups of G

25

Outputs: 0 if bcc(G,H,K) is not regular, or

k, if bcc(G,H,K) is k-regular. */

bcc_regular:=function(G,H,K)

L := H meet K;

H_index := Index(H,L);

K_index := Index(K,L);

if (H_index eq K_index) then

return H_index;

else

return 0;

end if;

end function;

/*finds subgroups of G (called H,K) so that bcc(G,H,K) gives semisymmetric graph.

Assumes that H cap K = 1*/

brute_force:=function(G,valence)

RF:=recformat<graph, G, H, K>;

output := [];

divisors := Divisors(IntegerRing() ! (Order(G)/valence));

sizes := [Floor(Order(G)/d) : d in divisors];

//sizes := [valence];

for e in sizes do

sg_classes := Subgroups(G: OrderEqual:=e);

subgroups := {};

for coset in sg_classes do

for subgroup in Conjugates(G,coset‘subgroup) do

Include(~subgroups,subgroup);

end for;

end for;

for Hclass in sg_classes do

H:=Hclass‘subgroup;

for K in subgroups do

L := H meet K;

if Index(H,L) eq valence then

graph := bcc(G,H,K);

26

if not IsConnected(graph) then

continue;

end if;

//not filtering for semi-symmetrics.

//necessarily bi-transitive already.

r := rec<RF | graph:=graph, G:=G, H:=H, K:=K>;

Append(~output,r);

end if;

end for;

end for;

end for;

return output;

end function;

/* Performs the construction for all groups of a given order */

brute_force_size:=function(valence,order)

results := [];

s:=order;

verts2:=(IntegerRing() ! (s/valence));

if(IsPrime(verts2)) then

return [];

end if;

bool,root:=IsSquare(verts2);

if bool then

if IsPrime(root) then

return [];

end if;

end if;

number_groups := NumberOfSmallGroups(s);

for t in {1..number_groups} do

G:=SmallGroup(s,t);

output := brute_force(G,valence);

for x in output do

for orig in results do

if IsIsomorphic(orig‘graph,x‘graph) then

continue x;

end if;

end for;

27

Append(~results,x);

end for;

end for;

return results;

end function;

/* Finds all semi-symmetric graphs of a given valence

using groups with size between min_order and max_order. */

brute_force_all:=procedure(valence,min_order,max_order,~results,output_stuff)

if(#results gt 0) then

print "WARNING: results did not start empty!";

end if;

filename := output_stuff[1];

System("rm " * filename);

if #output_stuff gt 1 then

system_command := output_stuff[2];

else

system_command := ";";

end if;

min_order := Max(10*valence,min_order);

//all semisymmetric graphs have at least 20 vertices

//this really helps to skip order 32...

max_order := Floor(max_order/valence);

min_order := Floor(min_order/valence);

sizes := [valence*i : i in {min_order..max_order}];

sizes;

start_time := Realtime();

for s in sizes do

str1:="\nTime " * Sprint(Realtime(start_time)) * ":\n";

str2:="Starting size " * IntegerToString(s) * ".\n";

printf str1;

fprintf filename, str1;

printf str2;

28

fprintf filename, str2;

System(system_command);

//do the work!

if (s mod 64) eq 0 then

continue s;

end if;

X:=brute_force_size(valence,s);

for x in X do

for y in results do

if IsIsomorphic(x‘graph,y‘graph) then

continue x;

end if;

end for;

Append(~results,x);

end for;

//Do I/O

str1:= IntegerToString(#results) *

" bi-transitive graphs founds so far.\n";

str2:= "Finished size " * IntegerToString(s) * ".\n";

printf str1;

fprintf filename, str1;

printf str2;

fprintf filename, str2;

end for;

str1:="\nTime " * IntegerToString(Floor(Realtime(start_time))) *

": All done!\n\n";

printf str1;

fprintf filename, str1;

System(system_command);

end procedure;

print_results:=procedure(~results,filename)

for x in results do

s:=Sprint(x‘graph);

29

fprintf filename, s;

end for;

end procedure;

30

