The table below gives the probabilities of m jumps in a game of Jumping Checkers. To get the probability of m jumps with b checkers, divide the entry in the appropriate row & column by 28Cb -- found in the last column of the table.
| m=0 | m=1 | m=2 | m=3 | m=4 | m=5 | m=6 | m=7 | m=8 | m=9 | 28Cb | |||
| b=1 | 25 | 3 | 28 | ||||||||||
| b=2 | 301 | 68 | 9 | 378 | |||||||||
| b=3 | 2326 | 742? | 183? | 25 | 3,276 | ||||||||
| b=4 | 12,972 | ? | ? | ? | ? | 20,475 | |||||||
| b=5 | 55,663 | ? | ? | ? | ? | ? | 98,280 | ||||||
| b=6 | 191,344 | ? | ? | ? | ? | ? | 48 | 376,740 | |||||
| b=7 | 541,608 | ? | ? | ? | ? | ? | ? | 25 | 1,184,040 | ||||
| b=8 | 1,288,110 | ? | ? | ? | ? | ? | ? | ? | 9 | 3,108,105 | |||
| b=9 | 2,613,128 | ? | ? | ? | ? | ? | ? | ? | 131? | 1 | 6,906,900 |
It is not too hard to show that the probability of no jumps when b checkers are placed on the board (b between 1 and 28), can be written as