

BIO 475 - Parasitology

Spring 2009

Stephen M. Shuster
Northern Arizona University

<http://www4.nau.edu/isopod>

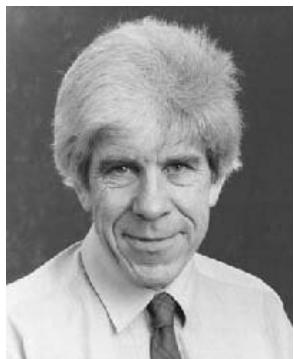
Lecture 11

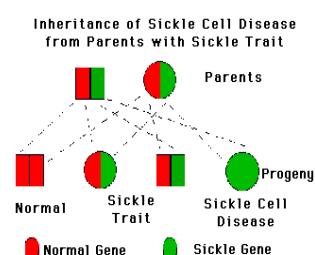
Plasmodium falciparum

5. Pathology

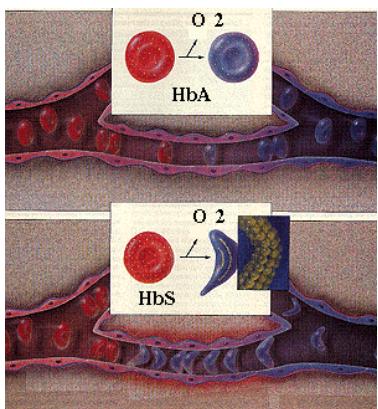
- a. liver, brain damage due to blockages
- b. fevers, chills, incontinence, dehydration
- c. anemia, immunosuppression.

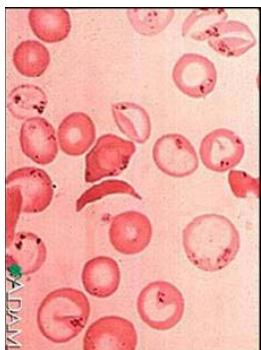
Plasmodium falciparum


- d. blackwater fever - due to insufficient treatment with quinine; followed by re-treatment


W. D. Hamilton 1936-2000

W. D. Hamilton was best known for his theory of kin selection, which he originated while still a student and expanded upon in a series of classic papers in the early 1960s. Since then, he worked on, and made important contributions to, a number of problematic issues in evolutionary biology including:


- The importance of parasites in explaining the maintenance of sexual reproduction.


Sickle Cell Anemia

1. Due to recessive allele, overdominance
2. Causes cells to sickle in low O₂ concentrations.
 - a. Makes it difficult for parasite to invade

Sickle Cell Anemia

- b. Also, sickled cells leak K⁺
- 3. Macrophages can recognize parasitized cells.

Sickle Cell Anemia

- 4. Similar conditions in South American, Asian Indian populations, Unrelated to Africans.

6PGDH Deficiency

- 1. In some populations, individuals lacking this enzyme in large amounts in RBCs have malarial resistance.
- 2. Exists in African and Mediterranean.
- 3. Drug therapies work on the same principal; inhibit biochemical pathways important to the parasite.

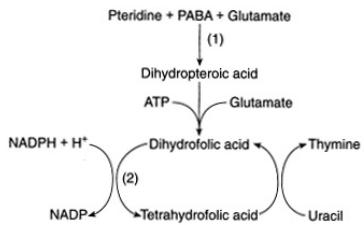
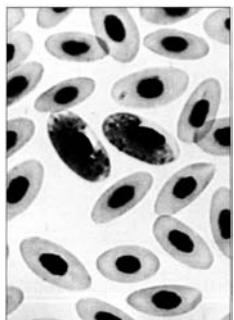


Figure 9.9

Metabolism of folate in *Plasmodium*. (1) Site of action of PABA analogs, such as sulfadoxine, which inhibit the synthesis of dihydropteroic acid from PABA and pteridine. (2) Site of action of pyrimethamine, which inhibits synthesis of tetrahydrofolate from dihydrofolate, which prevents the synthesis of thymine required for DNA synthesis.


Source: D. L. Looker et al., *Chemotherapy of Parasitic Diseases*, 1986. Plenum Press, New York, NY.

Malarial-like Organisms

- A. also belong to Haemosporina, but differ as follows:
 1. no schizogony in peripheral circulation (usually in liver)
 2. Sporogony in insects other than mosquitoes

Haemoproteus sp.

- 1. Common in domestic fowl as well as ducks, turkeys, reptiles.
- b. Similar life cycle except that merozoites form in reticuloendothelial cells.
- c. Merozoites entering blood cells become gametocytes.

Figure 9.10
Haemoproteus gametocytes in blood of a mourning dove. They are about 14 μ m long.
Courtesy of Steven Donta

Haemoproteus sp.

d. Vectored by
hippoboscid flies
(Hippoboscidae).

Leucocytozoon sp.

- a. Common blood parasite of birds (wild and domestic)
- b. Similar life cycle except that merozoites form in liver
- c. Symptoms:
 - 1. Marked anemia, often fatal
- d. vectored by blackflies (Simuliidae)

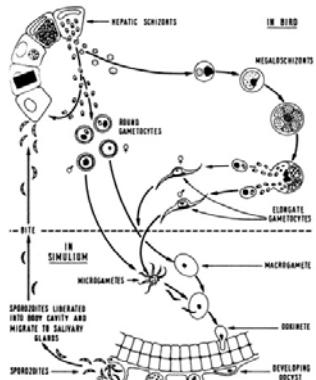


FIG. 9-21. *Leucocytozoon simondi* life cycle. (From Adam, K. M. G., et al.: *Medical and Veterinary Protozoology*. Edinburgh, Churchill Livingstone, 1971.)

Subclass Piroplasmia

Order Piroplasmida

1. Pyriform (or other spheroid) shaped parasites of vertebrates.

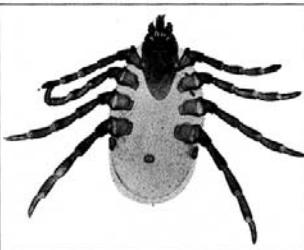


Figure 9.13
Boophilus annulatus, the vector of *Babesia bigemina*.
Courtesy of Jay Geogr.

- a. Locomotion by body flexion.
- b. Commonly vectored by ticks.

Babesia sp.

Figure 9.14
Babesia bigemina trophozoites in the erythrocytes of a cow.
Courtesy of Warren Bass.

- a. Usually associated with domestic animals
 - a. babesiosis or piroplasmosis.
 - b. Cattle tick fever; Texas fever.

***Babesia* sp.**

- c. Severe internal problems, due to massive infection of RE system by trophozoites.
- d. Symptoms:
 - 1. Bloody diarrhea, 90% death in some infections.
 - 2. In dogs, a. similar symptoms, but survivors acquire immunity.

***Babesia* sp.**

- 2. Generalized life cycle
- a. Trophozoites ingest red blood cytoplasm - undergo asexual reproduction.
- b. Ticks pick up infected cells

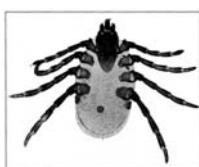
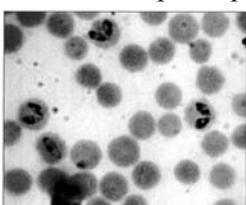
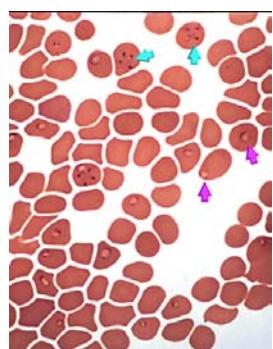



Figure 9.13
Ixodes scapularis, the vector of *Babesia microti*.
Courtesy of Ix Group.



***Babesia* sp.**

- c. gamonts form within tick, fertilization occurs
- d. motile kinetes leave gut, infect tick including salivary glands
- e. host is infected by bite.

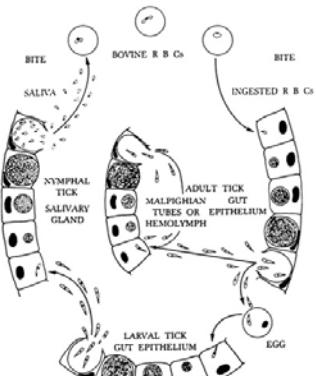
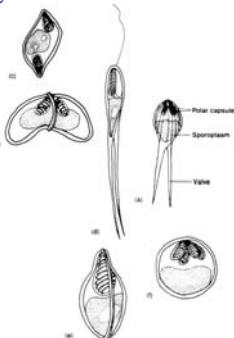


FIG. 5-22. *Babesia bigemina* development in the tick, *Ixodes ricinus*. RBC, Red blood cell. (Modified from Kirk, 1964. In Adam, K. M. G., et al.: *Medical and Veterinary Protozoology*. Edinburgh, Churchill Livingstone, 1971.)


Figure 9-17
Life cycle of Babesia canis. (1) Sporozoite injected with saliva of feeding tick. (2, 3) Asexual reproduction in red blood cells of vertebrate host by binary fission, yielding merozoites. (4) Merozoites in erythrocytes are digested in tick. (5, 6) Gameteocytes form promastigotes after ingestion by tick and become ray bodies. (7-9) Two ray bodies fuse to form zygote. (10) Zygote becomes nucleate kinete. (11) Nucleate kinete invaginates, enters other cells, and forms new kinetes. (12) Kinete that enters cells of salivary gland give rise to bounds of small sporozoites.

Drawing by William Ober and Cherie Gammie

Phylum Myxozoa

Characteristics:

1. Polycellular spores with variable numbers of valves.
2. 1-6 polar capsules with coiled hollow filaments.
3. Multinucleate sporoplasm.

Phylum Myxozoa

114 • Subkingdom Protists

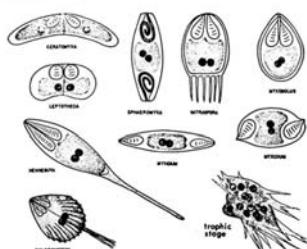


FIG. 6-1. Sample spores of the order Myxosporida. At the lower right corner is a trophic stage with slugs, pointed pseudopodia that are typical of several genera.

4. Polycellular developmental stages in which spore formation occurs.

Class Myxosporea

(Order Myxosporida)

1. Histozoic or coelozoic parasites of fish.
2. Direct life cycle: spores ingested, valves open, asexual reproduction until cells unite, form more spores.
3. some suggest they may have affinities to Cnidaria.

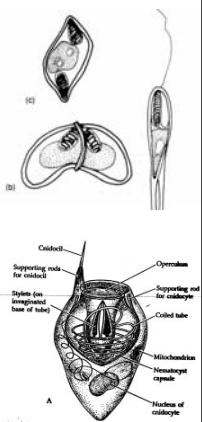
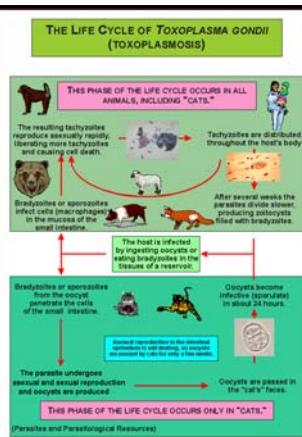



Figure 23

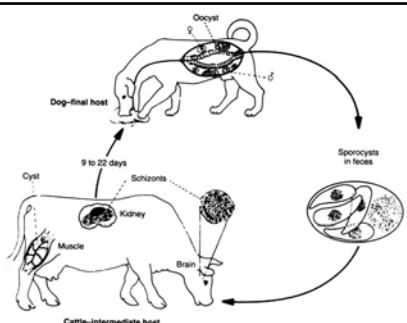


FIGURE 8.14

Life cycle of *Sarcozystis rauschii* of cattle with the dog exemplifying the definitive host. Dogs, wolves, coyotes, raccoons, and foxes shed oocysts or sporozoysts in their feces after eating infected bovine musculature. Cattle become infected by ingesting sporozoysts from the feces of canines. Generalized infection occurs in bovine tissues, and schizonts are formed in many tissues, especially in the kidneys and brain. After schizogonic cycles, cysts are formed in the musculature in two months. Current evidence indicates that canines become infected by ingesting only mature cysts. Sporozoysts are formed in the canines and are passed in the feces.

From J. P. Dubey, "A review of Sarcozystis of domestic animals and of other coccidia of cats and dogs," in *Am. Vet. Med. Assoc.* 169:1061-1078. Copyright © 1976. Reprinted with permission of the publisher.
