C4graphConstructions for C4[ 32, 2 ] = {4,4}_4,4

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 32, 2 ]. See Glossary for some detail.

{4, 4}_ 4, 4 = PS( 8, 8; 1) = PS( 8, 8; 3)

      = PX( 4, 3) = MC3( 4, 8, 1, 3, 3, 4, 1) = LoPr_ 8( 1, 2, 2, 2, 1)

      = KE_ 8( 1, 1, 2, 5, 3) = Curtain_ 8( 1, 2, 2, 5, 8) = AMC( 2, 8, [ 1. 2: 2. 7])

      = UG(ATD[ 32, 5]) = UG(ATD[ 32, 8]) = UG(ATD[ 32, 11])

      = UG(Rmap( 64, 3) { 4, 4| 8}_ 8) = MG(Rmap( 32, 3) { 4, 4| 4}_ 8) = DG(Rmap( 32, 3) { 4, 4| 4}_ 8)

      = DG(Rmap( 32, 4) { 4, 8| 4}_ 4) = MG(Rmap( 32, 15) { 8, 8| 4}_ 8) = DG(Rmap( 32, 15) { 8, 8| 4}_ 8)

      = MG(Rmap( 32, 17) { 8, 8| 4}_ 8) = DG(Rmap( 32, 17) { 8, 8| 4}_ 8) = MG(Rmap( 32, 19) { 8, 8| 2}_ 8)

      = DG(Rmap( 32, 19) { 8, 8| 2}_ 8) = BGCG(K_4,4; K2;3) = PL({4, 4}_ 4, 0[ 4^ 8])

      = AT[ 32, 1]

Cyclic coverings

mod 8:
1234
1 1 7 0 - 0
2 0 1 7 0 -
3 - 0 1 7 4
4 0 - 4 1 7

mod 8:
1234
1 1 7 0 2 - -
2 0 6 - 0 2 -
3 - 0 6 - 0 2
4 - - 0 6 1 7

mod 8:
1234
1 1 7 0 - 0
2 0 - 0 1 7
3 - 0 3 5 4
4 0 1 7 4 -

mod 8:
1234
1 - 0 0 6 0
2 0 - 1 1 3
3 0 2 7 - 3
4 0 5 7 5 -

mod 8:
1234
1 - 0 1 7 - 0
2 0 1 7 - 0 -
3 - 0 - 1 4 7
4 0 - 1 4 7 -