[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 40, 8 ]. See Glossary for some
detail.
PX( 5, 3) = KE_ 10( 1, 1, 3, 7, 4) = UG(ATD[ 40, 12])
= UG(Rmap( 80, 4) { 5, 4| 4}_ 10) = MG(Rmap( 40, 26) { 4, 5| 4}_ 5) =
DG(Rmap( 40, 27) { 5, 4| 4}_ 5)
= PL(R_ 10( 7, 6)[ 4^ 10]) = AT[ 40, 1]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | 0 | 0 | - | - | - | - |
2 | - | - | 2 | 2 | 0 | 0 | - | - | - | - |
3 | 0 | 2 | - | - | - | - | 0 | 0 | - | - |
4 | 0 | 2 | - | - | - | - | - | - | 0 | 0 |
5 | 0 | 0 | - | - | - | - | 1 | 1 | - | - |
6 | 0 | 0 | - | - | - | - | - | - | 1 | 1 |
7 | - | - | 0 | - | 3 | - | - | 3 | 1 | - |
8 | - | - | 0 | - | 3 | - | 1 | - | - | 3 |
9 | - | - | - | 0 | - | 3 | 3 | - | - | 1 |
10 | - | - | - | 0 | - | 3 | - | 1 | 3 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 1 | 0 1 | - | - | - | - | - | - |
2 | - | - | - | - | 0 1 | 0 1 | - | - | - | - |
3 | 0 3 | - | - | - | - | - | 0 | 0 | - | - |
4 | 0 3 | - | - | - | - | - | - | - | 0 | 0 |
5 | - | 0 3 | - | - | - | - | 0 | 0 | - | - |
6 | - | 0 3 | - | - | - | - | - | - | 0 | 0 |
7 | - | - | 0 | - | 0 | - | - | 3 | 1 | - |
8 | - | - | 0 | - | 0 | - | 1 | - | - | 3 |
9 | - | - | - | 0 | - | 0 | 3 | - | - | 1 |
10 | - | - | - | 0 | - | 0 | - | 1 | 3 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 1 | 0 1 | - | - | - | - | - | - |
2 | - | - | - | - | 0 1 | 0 1 | - | - | - | - |
3 | 0 3 | - | - | - | - | - | 0 | 0 | - | - |
4 | 0 3 | - | - | - | - | - | - | - | 0 | 0 |
5 | - | 0 3 | - | - | - | - | 0 | 0 | - | - |
6 | - | 0 3 | - | - | - | - | - | - | 0 | 0 |
7 | - | - | 0 | - | 0 | - | 1 3 | - | - | - |
8 | - | - | 0 | - | 0 | - | - | - | 1 3 | - |
9 | - | - | - | 0 | - | 0 | - | 1 3 | - | - |
10 | - | - | - | 0 | - | 0 | - | - | - | 1 3 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | 0 | 0 | - | - | - | - |
2 | - | - | 2 | 2 | 0 | 0 | - | - | - | - |
3 | 0 | 2 | - | - | - | - | 0 | 0 | - | - |
4 | 0 | 2 | - | - | - | - | - | - | 0 | 0 |
5 | 0 | 0 | - | - | - | - | 1 | 1 | - | - |
6 | 0 | 0 | - | - | - | - | - | - | 1 | 1 |
7 | - | - | 0 | - | 3 | - | 1 3 | - | - | - |
8 | - | - | 0 | - | 3 | - | - | - | 1 3 | - |
9 | - | - | - | 0 | - | 3 | - | 1 3 | - | - |
10 | - | - | - | 0 | - | 3 | - | - | - | 1 3 |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
1 | 1 9 | 0 | - | 0 |
2 | 0 | - | 1 | 1 8 |
3 | - | 9 | 4 6 | 3 |
4 | 0 | 2 9 | 7 | - |