C4graphConstructions for C4[ 48, 12 ] = KE_12(1,7,4,9,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 48, 12 ]. See Glossary for some detail.

KE_ 12( 1, 7, 4, 9, 1) = UG(ATD[ 48, 15]) = UG(ATD[ 48, 16])

      = UG(ATD[ 48, 17]) = DG(F 16) = MG(Rmap( 48, 20) { 6, 8| 8}_ 12)

      = DG(Rmap( 48, 20) { 6, 8| 8}_ 12) = DG(Rmap( 48, 22) { 8, 6| 8}_ 12) = DG(Rmap( 48, 28) { 6, 12| 12}_ 8)

      = DG(Rmap( 24, 4) { 8, 3| 8}_ 12) = DG(Rmap( 24, 15) { 8, 6| 8}_ 12) = B(R_ 12( 11, 4))

      = BGCG(R_ 12( 11, 4); K1;1) = B(R_ 12( 5, 10)) = BGCG(R_ 12( 5, 10); K1;1)

      = AT[ 48, 7]

Cyclic coverings

mod 12:
1234
1 - 0 1 - 0 2
2 0 11 - 0 4 -
3 - 0 8 - 4 5
4 0 10 - 7 8 -

mod 12:
1234
1 1 11 0 0 -
2 0 - 5 9 5
3 0 3 7 - 3
4 - 7 9 1 11

mod 8:
123456
1 - 0 1 - - - 0 3
2 0 7 - 0 2 - - -
3 - 0 6 - 0 1 - -
4 - - 0 7 - 0 5 -
5 - - - 0 3 - 4 6
6 0 5 - - - 2 4 -

mod 8:
123456
1 - 0 - - 0 0 6
2 0 - 0 0 - 1
3 - 0 - 1 3 2 -
4 - 0 5 7 - 6 -
5 0 - 6 2 - 5
6 0 2 7 - - 3 -

mod 8:
123456
1 1 7 0 - 0 - -
2 0 - 0 - 0 0
3 - 0 3 5 2 - -
4 0 - 6 - 4 2
5 - 0 - 4 3 5 -
6 - 0 - 6 - 1 7

mod 8:
123456
1 - 0 1 - - - 0 5
2 0 7 - 0 6 - - -
3 - 0 2 - 0 5 - -
4 - - 0 3 - 0 7 -
5 - - - 0 1 - 0 2
6 0 3 - - - 0 6 -