C4graphConstructions for C4[ 54, 4 ] = MC3(6,9,1,6,2,0,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 54, 4 ]. See Glossary for some detail.

MC3( 6, 9, 1, 6, 2, 0, 1) = CPM( 3, 2, 3, 1) = AMC( 6, 3, [ 0. 1: 2. 0])

      = UG(ATD[ 54, 3]) = ATD[ 9, 1]#DCyc[ 3] = ATD[ 9, 1]#ATD[ 9, 1]

      = UG(Rmap(108, 9) { 6, 4| 6}_ 12) = MG(Rmap( 54, 5) { 6, 6| 6}_ 6) = DG(Rmap( 54, 5) { 6, 6| 6}_ 6)

      = MG(Rmap( 54, 27) { 6, 12| 6}_ 12) = DG(Rmap( 54, 30) { 12, 6| 6}_ 12) = BGCG(DW( 3, 3), C_ 3, 1)

      = AT[ 54, 3]

Cyclic coverings

mod 6:
123456789
1 3 - - - - 0 - 0 2 -
2 - - 0 - - 2 4 - - 0
3 - 0 - 3 - - - - 1 5
4 - - 3 - 1 - 1 3 - -
5 - - - 5 1 5 - - 3 -
6 0 2 4 - - - - 5 - -
7 - - - 3 5 - 1 3 - -
8 0 4 - - - 3 - - - 5
9 - 0 1 5 - - - - 1 -

mod 6:
123456789
1 1 5 - - 0 - 0 - - -
2 - - - 2 4 - - 0 - 0
3 - - 1 5 - - 2 - 0 -
4 0 2 4 - - 3 - - - -
5 - - - 3 1 5 - - 1 -
6 0 - 4 - - - 1 5 - -
7 - 0 - - - 1 5 - - 3
8 - - 0 - 5 - - - 1 3
9 - 0 - - - - 3 3 5 -

mod 6:
123456789
1 - 0 0 - 0 - - - 0
2 0 - - 3 1 - 3 - -
3 0 - - 5 - 1 - - 5
4 - 3 1 - - 1 1 - -
5 0 5 - - - - 5 3 -
6 - - 5 5 - - - 1 1
7 - 3 - 5 1 - - 5 -
8 - - - - 3 5 1 - 5
9 0 - 1 - - 5 - 1 -

mod 9:
123456
1 - 0 - 0 1 - 0
2 0 - 0 - 0 2 -
3 - 0 - 7 - 3 8
4 0 8 - 2 - 7 -
5 - 0 7 - 2 - 4
6 0 - 1 6 - 5 -