[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 54, 5 ]. See Glossary for some
detail.
AMC( 6, 3, [ 0. 1: 2. 2]) = UG(ATD[ 54, 5]) = UG(ATD[ 54, 6])
= DG(F 18) = UG(Rmap(108, 8) { 6, 4| 6}_ 12) = MG(Rmap( 54, 4) { 6, 6|
6}_ 6)
= DG(Rmap( 54, 4) { 6, 6| 6}_ 6) = MG(Rmap( 54, 6) { 6, 6| 6}_ 6) =
DG(Rmap( 54, 6) { 6, 6| 6}_ 6)
= MG(Rmap( 54, 7) { 6, 6| 6}_ 6) = DG(Rmap( 54, 7) { 6, 6| 6}_ 6) =
MG(Rmap( 54, 28) { 6, 12| 6}_ 12)
= DG(Rmap( 54, 31) { 12, 6| 6}_ 12) = DG(Rmap( 27, 4) { 6, 3| 6}_ 6) =
B(AMC( 3, 3, [ 0. 1: 2. 2]))
= BGCG(AMC( 3, 3, [ 0. 1: 2. 2]); K1;1) = AT[ 54, 2]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | - | 0 | 0 | 0 | - |
2 | 0 | - | - | 1 | - | - | 3 | - | 1 |
3 | - | - | 1 5 | 4 | - | 2 | - | - | - |
4 | - | 5 | 2 | - | - | 1 | - | - | 3 |
5 | - | - | - | - | 1 5 | - | - | 0 | 0 |
6 | 0 | - | 4 | 5 | - | - | - | 3 | - |
7 | 0 | 3 | - | - | - | - | 1 5 | - | - |
8 | 0 | - | - | - | 0 | 3 | - | - | 3 |
9 | - | 5 | - | 3 | 0 | - | - | 3 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | - | - | 0 4 | 0 | - | - |
2 | - | - | 4 | 0 2 | - | - | 2 | - | - |
3 | 0 | 2 | - | - | - | - | - | 1 | 1 |
4 | - | 0 4 | - | - | 5 | - | 5 | - | - |
5 | - | - | - | 1 | - | 1 | - | 5 | 3 |
6 | 0 2 | - | - | - | 5 | - | 3 | - | - |
7 | 0 | 4 | - | 1 | - | 3 | - | - | - |
8 | - | - | 5 | - | 1 | - | - | 1 5 | - |
9 | - | - | 5 | - | 3 | - | - | - | 1 5 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 3 | - | - | 0 | - | - | 0 | - | 0 |
2 | - | 3 | - | - | - | 0 | 4 | 0 | - |
3 | - | - | - | - | 0 2 | - | - | 2 | 4 |
4 | 0 | - | - | - | 1 | 5 | - | - | 1 |
5 | - | - | 0 4 | 5 | - | 5 | - | - | - |
6 | - | 0 | - | 1 | 1 | - | - | 5 | - |
7 | 0 | 2 | - | - | - | - | 1 5 | - | - |
8 | - | 0 | 4 | - | - | 1 | - | - | 1 |
9 | 0 | - | 2 | 5 | - | - | - | 5 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 2 | 0 | - | 4 |
3 | - | - | - | 2 | 4 | - | 4 | 2 | - |
4 | - | 0 | 4 | - | - | - | - | 3 | 1 |
5 | 0 | - | 2 | - | - | - | 3 | - | 3 |
6 | 0 | 4 | - | - | - | - | 1 | 3 | - |
7 | - | 0 | 2 | - | 3 | 5 | - | - | - |
8 | 0 | - | 4 | 3 | - | 3 | - | - | - |
9 | 0 | 2 | - | 5 | 3 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 0 | 0 | - | 4 |
3 | - | - | - | 0 | 0 | - | 4 | 2 | - |
4 | - | 0 | 0 | - | - | - | 1 3 | - | - |
5 | 0 | - | 0 | - | - | - | - | 3 5 | - |
6 | 0 | 0 | - | - | - | - | - | - | 1 3 |
7 | - | 0 | 2 | 3 5 | - | - | - | - | - |
8 | 0 | - | 4 | - | 1 3 | - | - | - | - |
9 | 0 | 2 | - | - | - | 3 5 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 3 | 0 | - | - | 0 | 0 | - | - | - |
2 | 0 | - | 1 | 1 | - | 5 | - | - | - |
3 | - | 5 | 3 | 5 | 3 | - | - | - | - |
4 | - | 5 | 1 | - | - | - | - | 4 | 4 |
5 | 0 | - | 3 | - | - | - | 2 | - | 2 |
6 | 0 | 1 | - | - | - | - | 4 | 4 | - |
7 | - | - | - | - | 4 | 2 | 3 | 1 | - |
8 | - | - | - | 2 | - | 2 | 5 | - | 1 |
9 | - | - | - | 2 | 4 | - | - | 5 | 3 |