[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 60, 14 ]. See Glossary for some
detail.
UG(ATD[ 60, 20]) = UG(ATD[ 60, 21]) = DG(F 20A)
= MG(Rmap( 60, 10) { 5, 6| 10}_ 10) = DG(Rmap( 60, 10) { 5, 6| 10}_ 10) =
DG(Rmap( 60, 16) { 5, 10| 6}_ 6)
= DG(Rmap( 30, 3) { 5, 3| 5}_ 10) = DG(Rmap( 30, 5) { 5, 5| 3}_ 6) =
DG(Rmap( 30, 27) { 5, 6| 10}_ 10)
= DG(Rmap( 30, 35) { 5, 10| 6}_ 6) = AT[ 60, 12]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 5 | 0 | 0 | - | - | - | - | - | - | - |
2 | 0 | - | 3 | 0 | - | 0 | - | - | - | - |
3 | 0 | 3 | - | 1 | 3 | - | - | - | - | - |
4 | - | 0 | 5 | - | 5 | 3 | - | - | - | - |
5 | - | - | 3 | 1 | - | - | 0 | - | 0 | - |
6 | - | 0 | - | 3 | - | - | 0 | 3 | - | - |
7 | - | - | - | - | 0 | 0 | - | 0 | 3 | - |
8 | - | - | - | - | - | 3 | 0 | - | 5 | 0 |
9 | - | - | - | - | 0 | - | 3 | 1 | - | 4 |
10 | - | - | - | - | - | - | - | 0 | 2 | 1 5 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | 0 | - | 0 | - | - | - | - |
2 | 0 | - | - | 1 | 0 | - | - | - | - | 0 |
3 | 0 | - | - | - | - | 5 | - | 0 | - | 1 |
4 | 0 | 5 | - | - | 1 | - | 5 | - | - | - |
5 | - | 0 | - | 5 | - | - | 5 | - | 0 | - |
6 | 0 | - | 1 | - | - | - | 1 | 5 | - | - |
7 | - | - | - | 1 | 1 | 5 | - | 5 | - | - |
8 | - | - | 0 | - | - | 1 | 1 | - | 1 | - |
9 | - | - | - | - | 0 | - | - | 5 | - | 2 4 |
10 | - | 0 | 5 | - | - | - | - | - | 2 4 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | 0 | - | - | - | - | - | - | 0 |
2 | 0 5 | - | - | 0 | 0 | - | - | - | - | - |
3 | 0 | - | - | - | - | 0 | - | 0 | - | 2 |
4 | - | 0 | - | - | 5 | - | 0 | 4 | - | - |
5 | - | 0 | - | 1 | - | - | 5 | - | 0 | - |
6 | - | - | 0 | - | - | - | 0 1 | - | - | 1 |
7 | - | - | - | 0 | 1 | 0 5 | - | - | - | - |
8 | - | - | 0 | 2 | - | - | - | - | 3 5 | - |
9 | - | - | - | - | 0 | - | - | 1 3 | - | 1 |
10 | 0 | - | 4 | - | - | 5 | - | - | 5 | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 1 9 | 0 | 0 | - | - | - |
2 | 0 | - | - | 1 | 1 | 1 |
3 | 0 | - | - | 9 | 2 | 8 |
4 | - | 9 | 1 | 1 9 | - | - |
5 | - | 9 | 8 | - | 2 8 | - |
6 | - | 9 | 2 | - | - | 2 8 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 4 6 | 0 1 | - | - | - | - |
2 | 0 9 | - | 0 | 0 | - | - |
3 | - | 0 | - | 1 5 | 0 | - |
4 | - | 0 | 5 9 | - | 4 | - |
5 | - | - | 0 | 6 | - | 0 1 |
6 | - | - | - | - | 0 9 | 4 6 |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | - | 0 1 | - | 0 2 | - | - |
2 | 0 9 | - | 0 | - | 0 | - |
3 | - | 0 | 2 8 | - | - | 0 |
4 | 0 8 | - | - | - | - | 7 8 |
5 | - | 0 | - | - | 2 8 | 6 |
6 | - | - | 0 | 2 3 | 4 | - |