[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 60, 15 ]. See Glossary for some
detail.
UG(ATD[ 60, 22]) = MG(Rmap( 60, 21) { 6, 10| 5}_ 10) = MG(Rmap( 60, 74) {
6, 10| 10}_ 10)
= DG(Rmap( 60, 74) { 6, 10| 10}_ 10) = DG(Rmap( 30, 30) { 6, 5| 10}_ 10) =
DG(Rmap( 30, 39) { 6, 10| 5}_ 10)
= B(Pr_ 10( 1, 1, 2, 2)) = BGCG(Pr_ 10( 1, 1, 2, 2); K1;2) = B(Pr_ 10(
1, 4, 3, 2))
= BGCG(Pr_ 10( 1, 4, 3, 2); K1;2) = BGCG(Pr_ 10( 2, 3, 1, 4); K1;{4,
5}) = AT[ 60, 11]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 5 | - | 0 | - | - | 0 | - | - | - | - |
2 | - | - | - | - | - | 0 | - | 0 | 0 | 0 |
3 | 0 | - | - | - | - | 3 | 5 | 1 | - | - |
4 | - | - | - | 1 5 | 0 | - | - | - | 0 | - |
5 | - | - | - | 0 | - | - | 1 | - | 3 | 5 |
6 | 0 | 0 | 3 | - | - | - | - | 3 | - | - |
7 | - | - | 1 | - | 5 | - | - | 5 | - | 1 |
8 | - | 0 | 5 | - | - | 3 | 1 | - | - | - |
9 | - | 0 | - | 0 | 3 | - | - | - | - | 3 |
10 | - | 0 | - | - | 1 | - | 5 | - | 3 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | 0 | 0 | - | - | - | - |
2 | - | - | 2 | - | 0 4 | - | - | - | 0 | - |
3 | 0 | 4 | - | 1 | - | - | 1 | - | - | - |
4 | 0 | - | 5 | - | - | 1 | 5 | - | - | - |
5 | 0 | 0 2 | - | - | - | - | - | - | - | 3 |
6 | 0 | - | - | 5 | - | - | - | 0 | - | 1 |
7 | - | - | 5 | 1 | - | - | - | 0 | 5 | - |
8 | - | - | - | - | - | 0 | 0 | - | 4 | 2 |
9 | - | 0 | - | - | - | - | 1 | 2 | - | 5 |
10 | - | - | - | - | 3 | 5 | - | 4 | 1 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 | 0 | - | - | - |
2 | - | - | - | - | 5 | 0 | - | 0 | 0 | - |
3 | - | - | - | - | 3 | - | 1 | 5 | 3 | - |
4 | - | - | - | - | - | 4 | 3 | 0 5 | - | - |
5 | 0 5 | 1 | 3 | - | - | - | - | - | - | - |
6 | 0 | 0 | - | 2 | - | - | - | - | - | 1 |
7 | 0 | - | 5 | 3 | - | - | - | - | - | 3 |
8 | - | 0 | 1 | 0 1 | - | - | - | - | - | - |
9 | - | 0 | 3 | - | - | - | - | - | - | 3 5 |
10 | - | - | - | - | - | 5 | 3 | - | 1 3 | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | - | - | - | 0 1 | 0 2 | - |
2 | - | - | - | - | 0 6 | 0 2 |
3 | - | - | - | 5 7 | - | 0 9 |
4 | 0 9 | - | 3 5 | - | - | - |
5 | 0 8 | 0 4 | - | - | - | - |
6 | - | 0 8 | 0 1 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 1 9 | - | 0 6 | - | - | - |
2 | - | - | 0 | - | 0 | 0 4 |
3 | 0 4 | 0 | - | - | - | 5 |
4 | - | - | - | 1 9 | 0 4 | - |
5 | - | 0 | - | 0 6 | - | 9 |
6 | - | 0 6 | 5 | - | 1 | - |
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
1 | 1 9 | - | - | 0 | 0 | - |
2 | - | - | 0 6 | - | 0 2 | - |
3 | - | 0 4 | - | 3 5 | - | - |
4 | 0 | - | 5 7 | - | - | 5 |
5 | 0 | 0 8 | - | - | - | 7 |
6 | - | - | - | 5 | 3 | 1 9 |