C4graphConstructions for C4[ 64, 9 ] = PL(MSY(4,8,3,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 64, 9 ]. See Glossary for some detail.

PL(MSY( 4, 8, 3, 0)) = PL(MSY( 4, 8, 5, 0)) = PL(MC3( 4, 8, 1, 7, 3, 0, 1), [4^8, 8^4])

      = PL(MC3( 4, 8, 1, 7, 5, 0, 1), [4^8, 8^4]) = PL(KE_ 8( 1, 5, 2, 5, 1), [4^8, 8^4]) = PL(Curtain_ 8( 1, 3, 5, 7, 8), [4^8, 8^4])

      = PL(Br( 4, 8; 3)) = PL(ATD[ 8, 1]#DCyc[ 4]) = PL(CS(K_4,4[ 8^ 2], 0))

      = PL(CSI(K_4,4[ 8^ 2], 4)) = BGCG(K_4,4, C_ 4, {2, 2', 3, 3'}) = SS[ 64, 1]

     

Cyclic coverings

mod 8:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 3 0 - 0
3 - - - - 3 - 1 0 7
4 - - - - - 5 1 4 7
5 0 0 5 5 - - - - -
6 0 7 0 - 3 - - - -
7 0 - 7 4 7 - - - -
8 - 0 0 1 1 - - - -

mod 8:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - 3 0 0 0
3 - - - - 5 0 0 2
4 - - - - - - 0 1 5 6
5 0 7 5 3 - - - - -
6 0 7 0 0 - - - - -
7 - 0 0 0 7 - - - -
8 - 0 6 2 3 - - - -

mod 8:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 3 0 - 2
3 - - - - - 0 0 7 6
4 - - - - - 0 0 5 4
5 0 7 0 5 - - - - - -
6 0 0 0 0 - - - -
7 - - 0 1 0 3 - - - -
8 0 6 2 4 - - - -

mod 8:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 5 6
4 - - - - 7 0 5 4
5 0 0 7 1 - - - -
6 0 0 0 0 - - - -
7 0 6 3 3 - - - -
8 0 6 2 4 - - - -

mod 8:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 3 0 3 -
3 - - - - - - 0 1 0 1
4 - - - - 0 3 - - 0 3
5 0 7 - - 0 5 - - - -
6 0 7 0 5 - - - - - -
7 - 0 5 0 7 - - - - -
8 - - 0 7 0 5 - - - -