C4graphConstructions for C4[ 64, 10 ] = PL(MSY(4,8,3,4))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 64, 10 ]. See Glossary for some detail.

PL(MSY( 4, 8, 3, 4)) = PL(MSY( 4, 8, 5, 4)) = AMC( 4, 8, [ 1. 1: 0. 1])

      = PL(MBr( 4, 8; 3)) = UG(ATD[ 64, 22]) = UG(ATD[ 64, 23])

      = UG(ATD[ 64, 24]) = MG(Rmap( 64, 6) { 4, 8| 8}_ 8) = DG(Rmap( 64, 6) { 4, 8| 8}_ 8)

      = MG(Rmap( 64, 7) { 4, 8| 8}_ 8) = DG(Rmap( 64, 7) { 4, 8| 8}_ 8) = DG(Rmap( 64, 9) { 8, 4| 8}_ 8)

      = DG(Rmap( 64, 10) { 8, 4| 8}_ 8) = PL(MSY( 4, 8, 5, 4)[ 8^ 8]) = AT[ 64, 12]

     

Cyclic coverings

mod 8:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 3 0 3 -
3 - - - - - - 0 1 0 7
4 - - - - 0 3 - - 3 6
5 0 7 - - 0 5 - - - -
6 0 7 0 5 - - - - - -
7 - 0 5 0 7 - - - - -
8 - - 0 1 2 5 - - - -

mod 8:
12345678
1 1 7 0 - - - - - 0
2 0 - 1 1 - - - 1
3 - 7 3 5 5 - - - -
4 - 7 3 - 5 5 - -
5 - - - 3 1 7 1 - -
6 - - - 3 7 - 1 7
7 - - - - - 7 3 5 3
8 0 7 - - - 1 5 -

mod 8:
12345678
1 - - - - 0 0 0 1 -
2 - - - - 0 0 - 0 5
3 - - - - 1 7 - 0 5
4 - - - - 1 7 4 5 -
5 0 0 7 7 - - - -
6 0 0 1 1 - - - -
7 0 7 - - 3 4 - - - -
8 - 0 3 0 3 - - - - -

mod 8:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 3 0 - 2
3 - - - - - 0 0 3 6
4 - - - - - 0 0 1 4
5 0 7 0 5 - - - - - -
6 0 0 0 0 - - - -
7 - - 0 5 0 7 - - - -
8 0 6 2 4 - - - -

mod 8:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 1 3
3 - - - - 5 7 1 3
4 - - - - 5 7 4 4
5 0 0 3 3 - - - -
6 0 0 1 1 - - - -
7 0 7 7 4 - - - -
8 0 5 5 4 - - - -

mod 8:
12345678
1 1 7 0 - 0 - - - -
2 0 - - 1 1 1 - -
3 - - - - 0 2 0 - 0
4 0 7 - - 5 - - 3
5 - 7 0 6 3 - - - -
6 - 7 0 - - - 1 7
7 - - - - - 7 3 5 3
8 - - 0 5 - 1 5 -

mod 8:
12345678
1 - - 0 0 - 0 0 -
2 - - - - 0 0 2 0 -
3 0 - - - 1 3 - 1
4 0 - - - - - 7 1 3
5 - 0 7 - - - 3 7
6 0 0 6 5 - - - - -
7 0 0 - 1 5 - - -
8 - - 7 5 7 1 - - -