C4graphConstructions for C4[ 64, 15 ] = UG(ATD[64,10])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 64, 15 ]. See Glossary for some detail.

UG(ATD[ 64, 10]) = UG(ATD[ 64, 11]) = UG(Rmap(128, 8) { 8, 4| 8}_ 8)

      = UG(Rmap(128, 9) { 8, 4| 8}_ 8) = MG(Rmap( 64, 26) { 8, 8| 4}_ 8) = DG(Rmap( 64, 26) { 8, 8| 4}_ 8)

      = MG(Rmap( 64, 28) { 8, 8| 4}_ 8) = DG(Rmap( 64, 28) { 8, 8| 4}_ 8) = MG(Rmap( 64, 29) { 8, 8| 4}_ 8)

      = DG(Rmap( 64, 29) { 8, 8| 4}_ 8) = MG(Rmap( 64, 30) { 8, 8| 4}_ 8) = DG(Rmap( 64, 30) { 8, 8| 4}_ 8)

      = BGCG(K_4,4, C_ 4, 1) = AT[ 64, 4]

Cyclic coverings

mod 8:
12345678
1 1 7 0 - - - 0 - -
2 0 - - 0 2 0 - - -
3 - - 3 5 7 - - 0 -
4 - 0 6 1 - - - - 6
5 - 0 - - 3 5 4 - -
6 0 - - - 4 - 5 7 -
7 - - 0 - - 1 3 - 1
8 - - - 2 - - 7 1 7

mod 8:
12345678
1 - 0 6 - 0 - - 0 -
2 0 2 - - - 0 - - 0
3 - - - - 1 0 6 - 5
4 0 - - - - 5 3 5 -
5 - 0 7 - - - - 3 5
6 - - 0 2 3 - - 7 -
7 0 - - 3 5 - 1 - -
8 - 0 3 - 3 5 - - -

mod 8:
12345678
1 - 0 2 0 - 0 - - -
2 0 6 - - 0 - 0 - -
3 0 - - - 1 3 - 0 -
4 - 0 - - - 1 3 - 0
5 0 - 5 7 - - - 4 -
6 - 0 - 5 7 - - - 4
7 - - 0 - 4 - - 0 2
8 - - - 0 - 4 0 6 -

mod 8:
12345678
1 - 0 - 0 1 - - 0 -
2 0 - 0 3 - 0 - - -
3 - 0 5 - 4 - - - 2
4 0 7 - 4 - - 0 - -
5 - 0 - - - - 2 1 4
6 - - - 0 - - 2 3 0
7 0 - - - 6 5 6 - -
8 - - 6 - 4 7 0 - -

mod 8:
12345678
1 1 7 0 - - 0 - - -
2 0 - 0 0 6 - - - -
3 - 0 1 7 - 4 - - -
4 - 0 2 - - - 0 - 0
5 0 - 4 - - - 2 4 -
6 - - - 0 - 1 7 0 -
7 - - - - 4 6 0 - 4
8 - - - 0 - - 4 1 7

mod 8:
12345678
1 1 7 - 0 0 - - - -
2 - 1 7 - - 0 0 - -
3 0 - - 5 7 - 7 -
4 0 - 3 - - 1 3 -
5 - 0 1 - - 3 - 0
6 - 0 - 7 5 - - 4
7 - - 1 5 - - - 4 6
8 - - - - 0 4 2 4 -