[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 64, 15 ]. See Glossary for some
detail.
UG(ATD[ 64, 10]) = UG(ATD[ 64, 11]) = UG(Rmap(128, 8) { 8, 4| 8}_ 8)
= UG(Rmap(128, 9) { 8, 4| 8}_ 8) = MG(Rmap( 64, 26) { 8, 8| 4}_ 8) =
DG(Rmap( 64, 26) { 8, 8| 4}_ 8)
= MG(Rmap( 64, 28) { 8, 8| 4}_ 8) = DG(Rmap( 64, 28) { 8, 8| 4}_ 8) =
MG(Rmap( 64, 29) { 8, 8| 4}_ 8)
= DG(Rmap( 64, 29) { 8, 8| 4}_ 8) = MG(Rmap( 64, 30) { 8, 8| 4}_ 8) =
DG(Rmap( 64, 30) { 8, 8| 4}_ 8)
= BGCG(K_4,4, C_ 4, 1) = AT[ 64, 4]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 7 | 0 | - | - | - | 0 | - | - |
2 | 0 | - | - | 0 2 | 0 | - | - | - |
3 | - | - | 3 5 | 7 | - | - | 0 | - |
4 | - | 0 6 | 1 | - | - | - | - | 6 |
5 | - | 0 | - | - | 3 5 | 4 | - | - |
6 | 0 | - | - | - | 4 | - | 5 7 | - |
7 | - | - | 0 | - | - | 1 3 | - | 1 |
8 | - | - | - | 2 | - | - | 7 | 1 7 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 6 | - | 0 | - | - | 0 | - |
2 | 0 2 | - | - | - | 0 | - | - | 0 |
3 | - | - | - | - | 1 | 0 6 | - | 5 |
4 | 0 | - | - | - | - | 5 | 3 5 | - |
5 | - | 0 | 7 | - | - | - | - | 3 5 |
6 | - | - | 0 2 | 3 | - | - | 7 | - |
7 | 0 | - | - | 3 5 | - | 1 | - | - |
8 | - | 0 | 3 | - | 3 5 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 2 | 0 | - | 0 | - | - | - |
2 | 0 6 | - | - | 0 | - | 0 | - | - |
3 | 0 | - | - | - | 1 3 | - | 0 | - |
4 | - | 0 | - | - | - | 1 3 | - | 0 |
5 | 0 | - | 5 7 | - | - | - | 4 | - |
6 | - | 0 | - | 5 7 | - | - | - | 4 |
7 | - | - | 0 | - | 4 | - | - | 0 2 |
8 | - | - | - | 0 | - | 4 | 0 6 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 1 | - | - | 0 | - |
2 | 0 | - | 0 3 | - | 0 | - | - | - |
3 | - | 0 5 | - | 4 | - | - | - | 2 |
4 | 0 7 | - | 4 | - | - | 0 | - | - |
5 | - | 0 | - | - | - | - | 2 | 1 4 |
6 | - | - | - | 0 | - | - | 2 3 | 0 |
7 | 0 | - | - | - | 6 | 5 6 | - | - |
8 | - | - | 6 | - | 4 7 | 0 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 7 | 0 | - | - | 0 | - | - | - |
2 | 0 | - | 0 | 0 6 | - | - | - | - |
3 | - | 0 | 1 7 | - | 4 | - | - | - |
4 | - | 0 2 | - | - | - | 0 | - | 0 |
5 | 0 | - | 4 | - | - | - | 2 4 | - |
6 | - | - | - | 0 | - | 1 7 | 0 | - |
7 | - | - | - | - | 4 6 | 0 | - | 4 |
8 | - | - | - | 0 | - | - | 4 | 1 7 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 7 | - | 0 | 0 | - | - | - | - |
2 | - | 1 7 | - | - | 0 | 0 | - | - |
3 | 0 | - | - | 5 | 7 | - | 7 | - |
4 | 0 | - | 3 | - | - | 1 | 3 | - |
5 | - | 0 | 1 | - | - | 3 | - | 0 |
6 | - | 0 | - | 7 | 5 | - | - | 4 |
7 | - | - | 1 | 5 | - | - | - | 4 6 |
8 | - | - | - | - | 0 | 4 | 2 4 | - |