[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 72, 1 ] =
W(36,2).
(I) Following is a form readable by MAGMA:
g:=Graph<72|{ {2, 3}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60,
61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {22, 23}, {20, 21}, {18,
19}, {16, 17}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {24, 25},
{26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41},
{42, 43}, {44, 45}, {46, 47}, {48, 49}, {1, 2}, {69, 70}, {65, 66}, {61, 62},
{57, 58}, {53, 54}, {49, 50}, {21, 22}, {17, 18}, {5, 6}, {9, 10}, {13, 14},
{25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {3, 4}, {67, 68},
{59, 60}, {51, 52}, {19, 20}, {11, 12}, {27, 28}, {35, 36}, {43, 44}, {7, 8},
{71, 72}, {55, 56}, {23, 24}, {39, 40}, {15, 16}, {47, 48}, {4, 39}, {20, 55},
{16, 51}, {8, 43}, {12, 47}, {24, 59}, {28, 63}, {1, 36}, {19, 54}, {18, 55},
{17, 52}, {16, 53}, {2, 39}, {3, 38}, {8, 45}, {9, 44}, {10, 47}, {11, 46}, {24,
61}, {25, 60}, {26, 63}, {27, 62}, {1, 38}, {18, 53}, {17, 54}, {2, 37}, {9,
46}, {10, 45}, {25, 62}, {26, 61}, {3, 40}, {23, 60}, {19, 56}, {7, 44}, {4,
41}, {23, 58}, {22, 59}, {21, 56}, {20, 57}, {5, 40}, {6, 43}, {7, 42}, {5, 42},
{22, 57}, {21, 58}, {6, 41}, {11, 48}, {15, 52}, {12, 49}, {13, 48}, {14, 51},
{15, 50}, {13, 50}, {14, 49}, {31, 32}, {1, 72}, {27, 64}, {31, 68}, {28, 65},
{29, 64}, {30, 67}, {31, 66}, {29, 66}, {30, 65}, {32, 67}, {36, 71}, {32, 69},
{33, 68}, {34, 71}, {35, 70}, {33, 70}, {34, 69}, {35, 72}, {37, 72}, {63, 64}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (32, 68) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (6, 42)
c: (15, 51)
d: (18, 54)
e: (11, 47)
f: (2, 36)(3, 35)(4, 34)(5, 33)(6, 32)(7, 31)(8, 30)(9, 29)(10, 28)(11, 27)(12,
26)(13, 25)(14, 24)(15, 23)(16, 22)(17, 21)(18, 20)(38, 72)(39, 71)(40, 70)(41,
69)(42, 68)(43, 67)(44, 66)(45, 65)(46, 64)(47, 63)(48, 62)(49, 61)(50, 60)(51,
59)(52, 58)(53, 57)(54, 56)
g: (9, 45)
h: (16, 52)
m: (31, 67)
n1: (14, 50)
a1: (36, 72)
b1: (7, 43)
c1: (10, 46)
d1: (28, 64)
e1: (22, 58)
f1: (20, 56)
g1: (8, 44)
h1: (34, 70)
m1: (4, 40)
n2: (2, 38)
a2: (3, 39)
b2: (33, 69)
c2: (35, 71)
d2: (26, 62)
e2: (30, 66)
f2: (19, 55)
g2: (5, 41)
h2: (27, 63)
m2: (25, 61)
n3: (21, 57)
a3: (24, 60)
b3: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)
c3: (23, 59)
d3: (12, 48)
e3: (29, 65)
f3: (13, 49)
C4[ 72, 1 ]
72
-1 2 36 38 72
-2 1 3 37 39
-3 2 4 38 40
-4 3 5 39 41
-5 4 6 40 42
-6 5 7 41 43
-7 44 6 8 42
-8 45 7 9 43
-9 44 46 8 10
-10 11 45 47 9
-11 12 46 48 10
-12 11 13 47 49
-13 12 14 48 50
-14 13 15 49 51
-15 14 16 50 52
-16 15 17 51 53
-17 16 18 52 54
-18 55 17 19 53
-19 56 18 20 54
-20 55 57 19 21
-21 22 56 58 20
-22 23 57 59 21
-23 22 24 58 60
-24 23 25 59 61
-25 24 26 60 62
-26 25 27 61 63
-27 26 28 62 64
-28 27 29 63 65
-29 66 28 30 64
-30 67 29 31 65
-31 66 68 30 32
-32 33 67 69 31
-33 34 68 70 32
-34 33 35 69 71
-35 34 36 70 72
-36 1 35 37 71
-37 2 36 38 72
-38 1 3 37 39
-39 2 4 38 40
-40 3 5 39 41
-41 4 6 40 42
-42 5 7 41 43
-43 44 6 8 42
-44 45 7 9 43
-45 44 46 8 10
-46 11 45 47 9
-47 12 46 48 10
-48 11 13 47 49
-49 12 14 48 50
-50 13 15 49 51
-51 14 16 50 52
-52 15 17 51 53
-53 16 18 52 54
-54 55 17 19 53
-55 56 18 20 54
-56 55 57 19 21
-57 22 56 58 20
-58 23 57 59 21
-59 22 24 58 60
-60 23 25 59 61
-61 24 26 60 62
-62 25 27 61 63
-63 26 28 62 64
-64 27 29 63 65
-65 66 28 30 64
-66 67 29 31 65
-67 66 68 30 32
-68 33 67 69 31
-69 34 68 70 32
-70 33 35 69 71
-71 34 36 70 72
-72 1 35 37 71
0