C4graphConstructions for C4[ 72, 5 ] = {4,4}_6,6

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 72, 5 ]. See Glossary for some detail.

{4, 4}_ 6, 6 = PS( 12, 12; 1) = PS( 12, 12; 5)

      = AMC( 4, 12, [ 9. 8: 4. 9]) = UG(ATD[ 72, 7]) = UG(ATD[ 72, 8])

      = UG(ATD[ 72, 9]) = UG(Rmap(144, 4) { 4, 4| 12}_ 12) = MG(Rmap( 72, 3) { 4, 4| 6}_ 12)

      = DG(Rmap( 72, 3) { 4, 4| 6}_ 12) = DG(Rmap( 72, 8) { 4, 12| 6}_ 4) = MG(Rmap( 72, 44) { 12, 12| 6}_ 12)

      = DG(Rmap( 72, 44) { 12, 12| 6}_ 12) = MG(Rmap( 72, 45) { 12, 12| 6}_ 12) = DG(Rmap( 72, 45) { 12, 12| 6}_ 12)

      = MG(Rmap( 72, 46) { 12, 12| 2}_ 12) = DG(Rmap( 72, 46) { 12, 12| 2}_ 12) = BGCG(DW( 6, 3); K2;{4, 5})

      = PL({4, 4}_ 6, 0[ 6^ 12]) = BGCG({4, 4}_ 6, 0; K1;{4, 6}) = AT[ 72, 7]

     

Cyclic coverings

mod 12:
123456
1 1 11 0 - - - 0
2 0 - 0 - - 1 11
3 - 0 - 0 0 2 -
4 - - 0 5 7 7 -
5 - - 0 10 5 - 11
6 0 1 11 - - 1 -

mod 12:
123456
1 - 0 0 - 0 0
2 0 - 1 0 - 1
3 0 11 - 0 3 -
4 - 0 0 - 4 4
5 0 - 9 8 - 1
6 0 11 - 8 11 -

mod 12:
123456
1 1 11 0 2 - - - -
2 0 10 - 0 2 - - -
3 - 0 10 - 0 2 - -
4 - - 0 10 - 0 2 -
5 - - - 0 10 - 0 2
6 - - - - 0 10 1 11

mod 12:
123456
1 - 0 1 11 - - - 0
2 0 1 11 - 0 - - -
3 - 0 - 0 - 1 11
4 - - 0 - 0 5 7 -
5 - - - 0 5 7 - 6
6 0 - 1 11 - 6 -

mod 12:
123456
1 - 0 0 0 10 - -
2 0 - 9 - 0 10 -
3 0 3 - - - 1 3
4 0 2 - - - 0 3
5 - 0 2 - 0 - 0
6 - - 9 11 9 0 -

mod 12:
123456
1 1 11 0 - - - 0
2 0 1 11 0 - - -
3 - 0 1 11 0 - -
4 - - 0 1 11 0 -
5 - - - 0 1 11 6
6 0 - - - 6 1 11