[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 72, 18 ]. See Glossary for some
detail.
AMC( 8, 3, [ 0. 1: 1. 2]) = UG(ATD[ 72, 3]) = UG(Cmap(144, 3) { 8,
4| 6}_ 8)
= UG(Cmap(144, 4) { 8, 4| 6}_ 8) = MG(Cmap( 72, 5) { 8, 8| 4}_ 6) =
MG(Cmap( 72, 6) { 8, 8| 4}_ 6)
= DG(Cmap( 36, 1) { 8, 8| 4}_ 6) = DG(Cmap( 36, 2) { 8, 8| 4}_ 6) =
AT[ 72, 6]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 2 | - | 0 | - | 0 | - | - | - | - | - | - |
| 2 | 0 4 | - | - | - | 3 | 1 | - | - | - | - | - | - |
| 3 | - | - | 1 5 | 2 | 4 | - | - | - | - | - | - | - |
| 4 | 0 | - | 4 | - | - | - | - | 1 | 1 | - | - | - |
| 5 | - | 3 | 2 | - | - | - | 5 | - | 1 | - | - | - |
| 6 | 0 | 5 | - | - | - | - | 3 | 5 | - | - | - | - |
| 7 | - | - | - | - | 1 | 3 | - | - | - | - | 2 | 2 |
| 8 | - | - | - | 5 | - | 1 | - | - | - | 4 | - | 2 |
| 9 | - | - | - | 5 | 5 | - | - | - | - | 0 | 4 | - |
| 10 | - | - | - | - | - | - | - | 2 | 0 | - | 1 5 | - |
| 11 | - | - | - | - | - | - | 4 | - | 2 | 1 5 | - | - |
| 12 | - | - | - | - | - | - | 4 | 4 | - | - | - | 1 5 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3 | - | 0 | 0 | - | 0 | - | - | - | - | - | - |
| 2 | - | 3 | 2 | - | 0 | 4 | - | - | - | - | - | - |
| 3 | 0 | 4 | - | 1 | 3 | - | - | - | - | - | - | - |
| 4 | 0 | - | 5 | - | - | - | 1 3 | - | - | - | - | - |
| 5 | - | 0 | 3 | - | - | - | - | 1 5 | - | - | - | - |
| 6 | 0 | 2 | - | - | - | - | - | - | 1 3 | - | - | - |
| 7 | - | - | - | 3 5 | - | - | - | - | - | - | 2 | 2 |
| 8 | - | - | - | - | 1 5 | - | - | - | - | 2 | - | 0 |
| 9 | - | - | - | - | - | 3 5 | - | - | - | 0 | 4 | - |
| 10 | - | - | - | - | - | - | - | 4 | 0 | 3 | - | 5 |
| 11 | - | - | - | - | - | - | 4 | - | 2 | - | 3 | 5 |
| 12 | - | - | - | - | - | - | 4 | 0 | - | 1 | 1 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | 0 | 0 | - | - | - | - | 0 | 0 |
| 2 | - | - | - | 0 | - | 0 | - | - | - | 0 | - | 4 |
| 3 | - | - | - | 0 | 0 | - | - | - | - | 4 | 2 | - |
| 4 | - | 0 | 0 | - | - | - | 0 2 | - | - | - | - | - |
| 5 | 0 | - | 0 | - | - | - | - | 0 2 | - | - | - | - |
| 6 | 0 | 0 | - | - | - | - | - | - | 0 2 | - | - | - |
| 7 | - | - | - | 0 4 | - | - | - | - | - | - | 1 | 3 |
| 8 | - | - | - | - | 0 4 | - | - | - | - | 3 | - | 5 |
| 9 | - | - | - | - | - | 0 4 | - | - | - | 5 | 5 | - |
| 10 | - | 0 | 2 | - | - | - | - | 3 | 1 | - | - | - |
| 11 | 0 | - | 4 | - | - | - | 5 | - | 1 | - | - | - |
| 12 | 0 | 2 | - | - | - | - | 3 | 1 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
| 2 | - | - | 0 2 | - | - | - | - | 0 | 2 |
| 3 | - | 0 6 | - | - | 1 | 7 | - | - | - |
| 4 | 0 | - | - | - | 3 | - | - | 3 | 1 |
| 5 | 0 | - | 7 | 5 | - | - | 7 | - | - |
| 6 | - | - | 1 | - | - | 1 7 | 5 | - | - |
| 7 | 0 | - | - | - | 1 | 3 | - | - | 3 |
| 8 | - | 0 | - | 5 | - | - | - | 1 7 | - |
| 9 | 0 | 6 | - | 7 | - | - | 5 | - | - |