[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 72, 22 ]. See Glossary for some
detail.
PL(ATD[ 6, 1]#DCyc[ 3]) = PL(ATD[ 6, 1]#ATD[ 9, 1]) = XI(Rmap( 36,
6) { 3, 12| 12}_ 6)
= PL(CSI(Octahedron[ 4^ 3], 3)) = PL(CS(DW( 3, 3)[ 6^ 3], 0)) = BGCG(W(
6, 2), C_ 3, 1)
= BGCG(Pr_ 12( 1, 1, 5, 5); K1;3) = SS[ 72, 3]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | - | 0 | 0 | 0 |
2 | - | - | - | - | - | - | 0 | - | - | 3 | 3 | 0 |
3 | - | - | - | - | - | - | - | 0 | 0 | 2 | - | 3 |
4 | - | - | - | - | - | - | 3 | 4 | 2 | - | 2 | - |
5 | - | - | - | - | - | - | - | 3 | 0 | 2 | - | 0 |
6 | - | - | - | - | - | - | 3 | 1 | 2 | - | 5 | - |
7 | 0 | 0 | - | 3 | - | 3 | - | - | - | - | - | - |
8 | - | - | 0 | 2 | 3 | 5 | - | - | - | - | - | - |
9 | - | - | 0 | 4 | 0 | 4 | - | - | - | - | - | - |
10 | 0 | 3 | 4 | - | 4 | - | - | - | - | - | - | - |
11 | 0 | 3 | - | 4 | - | 1 | - | - | - | - | - | - |
12 | 0 | 0 | 3 | - | 0 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | - | 0 | 0 |
2 | - | - | - | - | - | - | 0 | - | 3 | - | 3 | 0 |
3 | - | - | - | - | - | - | 3 | 0 1 | 1 | - | - | - |
4 | - | - | - | - | - | - | - | - | - | 0 5 | 1 | 3 |
5 | - | - | - | - | - | - | - | 0 | 1 | 3 | - | 0 |
6 | - | - | - | - | - | - | 3 | 1 | - | 2 | 4 | - |
7 | 0 | 0 | 3 | - | - | 3 | - | - | - | - | - | - |
8 | - | - | 0 5 | - | 0 | 5 | - | - | - | - | - | - |
9 | 0 | 3 | 5 | - | 5 | - | - | - | - | - | - | - |
10 | - | - | - | 0 1 | 3 | 4 | - | - | - | - | - | - |
11 | 0 | 3 | - | 5 | - | 2 | - | - | - | - | - | - |
12 | 0 | 0 | - | 3 | 0 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | 0 | 0 | - | 0 4 | - |
2 | - | - | - | - | - | - | - | 3 | 0 | - | 0 1 | - |
3 | - | - | - | - | - | - | 0 | - | 3 | 0 5 | - | - |
4 | - | - | - | - | - | - | 3 | - | 3 | 0 2 | - | - |
5 | - | - | - | - | - | - | 3 | 3 | - | - | - | 0 4 |
6 | - | - | - | - | - | - | 0 | 3 | - | - | - | 0 1 |
7 | - | - | 0 | 3 | 3 | 0 | - | - | - | - | - | - |
8 | 0 | 3 | - | - | 3 | 3 | - | - | - | - | - | - |
9 | 0 | 0 | 3 | 3 | - | - | - | - | - | - | - | - |
10 | - | - | 0 1 | 0 4 | - | - | - | - | - | - | - | - |
11 | 0 2 | 0 5 | - | - | - | - | - | - | - | - | - | - |
12 | - | - | - | - | 0 2 | 0 5 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | - | 0 | 0 |
2 | - | - | - | - | - | - | 3 | - | 0 | - | 0 | 3 |
3 | - | - | - | - | - | - | - | 0 | 3 | 0 | 1 | - |
4 | - | - | - | - | - | - | - | 0 | 0 | 0 | 4 | - |
5 | - | - | - | - | - | - | 2 | 1 | - | 3 | - | 0 |
6 | - | - | - | - | - | - | 2 | 4 | - | 0 | - | 0 |
7 | 0 | 3 | - | - | 4 | 4 | - | - | - | - | - | - |
8 | - | - | 0 | 0 | 5 | 2 | - | - | - | - | - | - |
9 | 0 | 0 | 3 | 0 | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 0 | 3 | 0 | - | - | - | - | - | - |
11 | 0 | 0 | 5 | 2 | - | - | - | - | - | - | - | - |
12 | 0 | 3 | - | - | 0 | 0 | - | - | - | - | - | - |