C4graphGraph forms for C4 [ 75, 2 ] = {4,4}_<10,5>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 75, 2 ] = {4,4}_<10,5>.

(I) Following is a form readable by MAGMA:

g:=Graph<75|{ {2, 3}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {58, 59}, {56, 57}, {54, 55}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {20, 21}, {18, 19}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {1, 2}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {29, 30}, {25, 26}, {21, 22}, {17, 18}, {5, 6}, {9, 10}, {13, 14}, {33, 34}, {37, 38}, {41, 42}, {49, 50}, {53, 54}, {3, 4}, {67, 68}, {59, 60}, {27, 28}, {19, 20}, {11, 12}, {35, 36}, {43, 44}, {51, 52}, {1, 15}, {16, 30}, {7, 8}, {71, 72}, {55, 56}, {23, 24}, {16, 31}, {32, 47}, {39, 40}, {48, 63}, {1, 16}, {3, 18}, {5, 20}, {7, 22}, {9, 24}, {11, 26}, {13, 28}, {15, 30}, {33, 48}, {35, 50}, {37, 52}, {39, 54}, {41, 56}, {43, 58}, {45, 60}, {47, 62}, {46, 60}, {2, 17}, {6, 21}, {10, 25}, {14, 29}, {34, 49}, {38, 53}, {42, 57}, {46, 61}, {4, 19}, {12, 27}, {36, 51}, {44, 59}, {8, 23}, {40, 55}, {47, 48}, {17, 32}, {29, 44}, {27, 42}, {25, 40}, {23, 38}, {21, 36}, {19, 34}, {31, 46}, {12, 62}, {13, 63}, {31, 45}, {18, 33}, {30, 45}, {26, 41}, {22, 37}, {11, 61}, {20, 35}, {28, 43}, {24, 39}, {31, 32}, {2, 67}, {4, 69}, {6, 71}, {8, 73}, {10, 75}, {1, 66}, {5, 70}, {9, 74}, {3, 68}, {14, 64}, {15, 65}, {7, 72}, {49, 64}, {59, 74}, {57, 72}, {55, 70}, {51, 66}, {53, 68}, {50, 65}, {58, 73}, {54, 69}, {61, 75}, {52, 67}, {60, 75}, {56, 71}, {63, 64} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 66)(3, 51)(4, 36)(5, 21)(7, 71)(8, 56)(9, 41)(10, 26)(12, 61)(13, 46)(14, 31)(15, 16)(17, 65)(18, 50)(19, 35)(22, 70)(23, 55)(24, 40)(27, 75)(28, 60)(29, 45)(32, 64)(33, 49)(37, 69)(38, 54)(42, 74)(43, 59)(47, 63)(52, 68)(57, 73)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)(16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30)(31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45)(46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)(61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75)
c: (2, 16)(3, 31)(4, 46)(5, 61)(6, 11)(7, 26)(8, 41)(9, 56)(10, 71)(12, 21)(13, 36)(14, 51)(15, 66)(18, 32)(19, 47)(20, 62)(22, 27)(23, 42)(24, 57)(25, 72)(28, 37)(29, 52)(30, 67)(34, 48)(35, 63)(38, 43)(39, 58)(40, 73)(44, 53)(45, 68)(50, 64)(54, 59)(55, 74)(60, 69)(70, 75)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 75, 2 ]
75
-1 66 2 15 16
-2 1 67 3 17
-3 2 68 4 18
-4 3 69 5 19
-5 4 70 6 20
-6 5 71 7 21
-7 22 6 72 8
-8 23 7 73 9
-9 24 8 74 10
-10 11 25 9 75
-11 12 26 61 10
-12 11 13 27 62
-13 12 14 28 63
-14 13 15 29 64
-15 1 14 30 65
-16 1 17 30 31
-17 2 16 18 32
-18 33 3 17 19
-19 34 4 18 20
-20 35 5 19 21
-21 22 36 6 20
-22 23 37 7 21
-23 22 24 38 8
-24 23 25 39 9
-25 24 26 40 10
-26 11 25 27 41
-27 12 26 28 42
-28 13 27 29 43
-29 44 14 28 30
-30 45 15 16 29
-31 45 46 16 32
-32 33 47 17 31
-33 34 48 18 32
-34 33 35 49 19
-35 34 36 50 20
-36 35 37 51 21
-37 22 36 38 52
-38 23 37 39 53
-39 24 38 40 54
-40 55 25 39 41
-41 56 26 40 42
-42 57 27 41 43
-43 44 58 28 42
-44 45 59 29 43
-45 44 60 30 31
-46 47 60 61 31
-47 46 48 62 32
-48 33 47 49 63
-49 34 48 50 64
-50 35 49 51 65
-51 66 36 50 52
-52 67 37 51 53
-53 68 38 52 54
-54 55 69 39 53
-55 56 70 40 54
-56 55 57 71 41
-57 56 58 72 42
-58 57 59 73 43
-59 44 58 60 74
-60 45 46 59 75
-61 11 46 62 75
-62 12 47 61 63
-63 13 48 62 64
-64 14 49 63 65
-65 66 15 50 64
-66 1 67 51 65
-67 66 2 68 52
-68 67 3 69 53
-69 68 4 70 54
-70 55 69 5 71
-71 56 70 6 72
-72 57 71 7 73
-73 58 72 8 74
-74 59 73 9 75
-75 60 61 74 10
0

**************