[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 80, 18 ]. See Glossary for some
detail.
KE_ 20( 1, 9, 7, 13, 4) = UG(ATD[ 80, 22]) = UG(Rmap(160, 4) { 5, 4|
8}_ 20)
= MG(Rmap( 80, 5) { 5, 5| 10}_ 8) = DG(Rmap( 80, 56) { 5, 8| 8}_ 5) =
AT[ 80, 5]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 7 | 0 | - | - | - | - | - | 0 | - | - |
2 | 0 | - | 0 1 | - | - | - | - | - | - | 0 |
3 | - | 0 7 | - | 0 5 | - | - | - | - | - | - |
4 | - | - | 0 3 | - | 0 | - | - | - | 0 | - |
5 | - | - | - | 0 | 3 5 | 0 | - | - | - | - |
6 | - | - | - | - | 0 | - | 2 5 | - | 4 | - |
7 | - | - | - | - | - | 3 6 | - | 5 6 | - | - |
8 | 0 | - | - | - | - | - | 2 3 | - | - | 4 |
9 | - | - | - | 0 | - | 4 | - | - | - | 0 2 |
10 | - | 0 | - | - | - | - | - | 4 | 0 6 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 | - |
2 | 0 | - | 0 | - | - | 0 | - | 0 | - | - |
3 | - | 0 | - | 1 | - | - | 2 | - | 5 | - |
4 | 0 | - | 7 | - | 1 7 | - | - | - | - | - |
5 | - | - | - | 1 7 | - | 1 | - | 6 | - | - |
6 | - | 0 | - | - | 7 | - | 6 | - | - | 7 |
7 | 0 | - | 6 | - | - | 2 | - | 4 | - | - |
8 | - | 0 | - | - | 2 | - | 4 | - | - | 6 |
9 | 0 | - | 3 | - | - | - | - | - | 3 5 | - |
10 | - | - | - | - | - | 1 | - | 2 | - | 1 7 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | 0 5 | - | - | - |
2 | 0 7 | - | 0 | 0 | - | - | - | - | - | - |
3 | - | 0 | - | 7 | 0 | - | - | 0 | - | - |
4 | - | 0 | 1 | - | 4 | - | - | - | - | 1 |
5 | - | - | 0 | 4 | - | 2 5 | - | - | - | - |
6 | - | - | - | - | 3 6 | - | - | - | 0 7 | - |
7 | 0 3 | - | - | - | - | - | - | 3 | - | 2 |
8 | - | - | 0 | - | - | - | 5 | - | 2 | 4 |
9 | - | - | - | - | - | 0 1 | - | 6 | - | 1 |
10 | - | - | - | 7 | - | - | 6 | 4 | 7 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | 0 | - | 0 | - | - | - |
2 | 0 | - | 1 | - | 5 | - | - | - | - | 0 |
3 | 0 | 7 | - | 7 | - | 7 | - | - | - | - |
4 | - | - | 1 | - | 6 | - | - | 0 | 0 | - |
5 | 0 | 3 | - | 2 | - | 0 | - | - | - | - |
6 | - | - | 1 | - | 0 | - | - | 6 | 4 | - |
7 | 0 | - | - | - | - | - | - | 5 | 2 | 4 |
8 | - | - | - | 0 | - | 2 | 3 | - | - | 0 |
9 | - | - | - | 0 | - | 4 | 6 | - | - | 7 |
10 | - | 0 | - | - | - | - | 4 | 0 | 1 | - |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
1 | 1 19 | 0 | 0 | - |
2 | 0 | - | 2 9 | 9 |
3 | 0 | 11 18 | - | 13 |
4 | - | 11 | 7 | 4 16 |