[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 80, 19 ]. See Glossary for some
detail.
KE_ 20( 1, 11, 3, 7, 6) = UG(ATD[ 80, 23]) = UG(Rmap(160, 8) { 10, 4|
8}_ 20)
= MG(Rmap( 80, 61) { 8, 10| 8}_ 10) = DG(Rmap( 80, 63) { 10, 8| 8}_ 10) =
AT[ 80, 6]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | - | 0 | 0 | - | - |
2 | 0 | - | 0 | - | - | 0 | - | - | - | 0 |
3 | - | 0 | - | 0 2 | - | - | - | 1 | - | - |
4 | - | - | 0 6 | - | 5 | - | 2 | - | - | - |
5 | 0 | - | - | 3 | - | 4 | - | - | 3 | - |
6 | - | 0 | - | - | 4 | - | 6 | 2 | - | - |
7 | 0 | - | - | 6 | - | 2 | - | - | 2 | - |
8 | 0 | - | 7 | - | - | 6 | - | - | - | 3 |
9 | - | - | - | - | 5 | - | 6 | - | 3 5 | - |
10 | - | 0 | - | - | - | - | - | 5 | - | 1 7 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | - | - | 0 5 | - |
2 | 0 7 | - | 0 | 0 | - | - | - | - | - | - |
3 | - | 0 | - | 3 | 0 | - | - | - | - | 0 |
4 | - | 0 | 5 | - | 4 | - | 5 | - | - | - |
5 | - | - | 0 | 4 | - | 1 6 | - | - | - | - |
6 | - | - | - | - | 2 7 | - | - | 0 1 | - | - |
7 | - | - | - | 3 | - | - | - | 4 | 6 | 4 |
8 | - | - | - | - | - | 0 7 | 4 | - | - | 5 |
9 | 0 3 | - | - | - | - | - | 2 | - | - | 7 |
10 | - | - | 0 | - | - | - | 4 | 3 | 1 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 7 | 0 | - | - | - | - | - | 0 | - | - |
2 | 0 | - | 0 5 | - | - | - | - | - | 0 | - |
3 | - | 0 3 | - | 0 1 | - | - | - | - | - | - |
4 | - | - | 0 7 | - | 0 | - | - | - | - | 0 |
5 | - | - | - | 0 | 3 5 | 0 | - | - | - | - |
6 | - | - | - | - | 0 | - | 5 6 | - | - | 4 |
7 | - | - | - | - | - | 2 3 | - | 2 5 | - | - |
8 | 0 | - | - | - | - | - | 3 6 | - | 4 | - |
9 | - | 0 | - | - | - | - | - | 4 | - | 2 4 |
10 | - | - | - | 0 | - | 4 | - | - | 4 6 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | 0 | - | - | - | - | 0 |
2 | 0 | - | 1 | - | 5 | - | 0 | - | - | - |
3 | 0 | 7 | - | 7 | - | 7 | - | - | - | - |
4 | - | - | 1 | - | 2 | - | - | 0 | 0 | - |
5 | 0 | 3 | - | 6 | - | 4 | - | - | - | - |
6 | - | - | 1 | - | 4 | - | - | 4 | 6 | - |
7 | - | 0 | - | - | - | - | - | 1 | 4 | 4 |
8 | - | - | - | 0 | - | 4 | 7 | - | - | 6 |
9 | - | - | - | 0 | - | 2 | 4 | - | - | 7 |
10 | 0 | - | - | - | - | - | 4 | 2 | 1 | - |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
1 | 1 19 | 0 | 0 | - |
2 | 0 | - | 8 11 | 11 |
3 | 0 | 9 12 | - | 7 |
4 | - | 9 | 13 | 6 14 |