C4graphConstructions for C4[ 81, 2 ] = {4,4}_9,0

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 81, 2 ]. See Glossary for some detail.

{4, 4}_ 9, 0 = PS( 9, 9; 1) = MPS( 9, 18; 1)

      = UG(ATD[ 81, 7]) = UG(Rmap(162, 3) { 4, 4| 9}_ 18) = MG(Rmap( 81, 19) { 9, 18| 18}_ 18)

      = DG(Rmap( 81, 19) { 9, 18| 18}_ 18) = AT[ 81, 2]

Cyclic coverings

mod 9:
123456789
1 - 0 0 - - - - 0 0
2 0 - 1 0 - - - - 1
3 0 8 - 0 8 - - - -
4 - 0 0 - 0 8 - - -
5 - - 1 0 - 0 8 - -
6 - - - 1 0 - 0 6 -
7 - - - - 1 0 - 7 7
8 0 - - - - 3 2 - 1
9 0 8 - - - - 2 8 -

mod 9:
123456789
1 - 0 - 0 - - 0 - 0
2 0 - 0 - 0 - - 0 -
3 - 0 - 1 - 0 - - 1
4 0 - 8 - 0 - 6 - -
5 - 0 - 0 - 0 - 6 -
6 - - 0 - 0 - 7 - 7
7 0 - - 3 - 2 - 0 -
8 - 0 - - 3 - 0 - 1
9 0 - 8 - - 2 - 8 -

mod 9:
123456789
1 1 8 0 - - - - - - 0
2 0 1 8 0 - - - - - -
3 - 0 1 8 0 - - - - -
4 - - 0 1 8 0 - - - -
5 - - - 0 1 8 0 - - -
6 - - - - 0 1 8 0 - -
7 - - - - - 0 1 8 0 -
8 - - - - - - 0 1 8 0
9 0 - - - - - - 0 1 8

mod 9:
123456789
1 - 0 1 - - - - - - 0 8
2 0 8 - 0 1 - - - - - -
3 - 0 8 - 0 1 - - - - -
4 - - 0 8 - 0 1 - - - -
5 - - - 0 8 - 0 1 - - -
6 - - - - 0 8 - 0 1 - -
7 - - - - - 0 8 - 0 1 -
8 - - - - - - 0 8 - 0 1
9 0 1 - - - - - - 0 8 -