C4graphGraph forms for C4 [ 90, 7 ] = UG(ATD[90,11])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 90, 7 ] = UG(ATD[90,11]).

(I) Following is a form readable by MAGMA:

g:=Graph<90|{ {80, 83}, {85, 86}, {18, 22}, {80, 84}, {74, 78}, {33, 37}, {42, 46}, {74, 79}, {57, 63}, {1, 6}, {57, 62}, {1, 9}, {20, 28}, {6, 14}, {54, 62}, {23, 30}, {33, 40}, {32, 41}, {48, 57}, {64, 73}, {1, 11}, {64, 74}, {18, 25}, {53, 62}, {19, 31}, {35, 47}, {23, 27}, {48, 60}, {54, 58}, {6, 11}, {32, 45}, {17, 28}, {49, 63}, {69, 75}, {4, 11}, {85, 90}, {68, 75}, {64, 79}, {48, 63}, {54, 57}, {1, 16}, {11, 26}, {39, 53}, {6, 21}, {70, 85}, {39, 52}, {5, 16}, {15, 26}, {9, 31}, {14, 24}, {8, 31}, {70, 81}, {42, 50}, {66, 90}, {65, 89}, {4, 29}, {65, 88}, {9, 16}, {9, 19}, {14, 21}, {43, 55}, {70, 90}, {38, 59}, {4, 26}, {37, 59}, {10, 21}, {34, 61}, {43, 52}, {5, 36}, {5, 39}, {26, 56}, {13, 41}, {21, 51}, {30, 56}, {8, 47}, {14, 41}, {3, 42}, {15, 38}, {4, 46}, {25, 51}, {12, 38}, {22, 61}, {29, 49}, {3, 46}, {13, 32}, {3, 45}, {19, 61}, {13, 35}, {18, 61}, {5, 53}, {31, 47}, {20, 36}, {10, 58}, {19, 34}, {24, 41}, {29, 46}, {15, 59}, {24, 44}, {16, 36}, {2, 53}, {15, 56}, {10, 51}, {8, 50}, {2, 62}, {10, 54}, {7, 58}, {12, 77}, {17, 80}, {2, 65}, {7, 68}, {17, 84}, {18, 84}, {30, 89}, {25, 81}, {30, 86}, {7, 75}, {8, 68}, {25, 84}, {23, 89}, {7, 72}, {22, 89}, {23, 71}, {28, 76}, {27, 75}, {20, 69}, {29, 76}, {20, 66}, {22, 65}, {28, 69}, {2, 88}, {3, 88}, {12, 80}, {27, 71}, {17, 76}, {13, 83}, {27, 69}, {12, 83}, {24, 71}, {34, 64}, {44, 78}, {48, 82}, {51, 81}, {43, 78}, {36, 66}, {44, 74}, {55, 81}, {33, 73}, {43, 67}, {42, 67}, {60, 85}, {39, 77}, {40, 66}, {60, 86}, {34, 73}, {38, 77}, {44, 71}, {37, 73}, {37, 72}, {56, 86}, {60, 82}, {35, 83}, {63, 79}, {35, 82}, {50, 67}, {55, 70}, {40, 90}, {58, 72}, {59, 72}, {55, 67}, {45, 88}, {33, 87}, {50, 68}, {32, 87}, {52, 77}, {45, 87}, {52, 78}, {47, 82}, {49, 76}, {49, 79}, {40, 87} }>;

(II) A more general form is to represent the graph as the orbit of {80, 83} under the group generated by the following permutations:

a: (1, 6, 11)(2, 7, 12)(3, 8, 13)(4, 9, 14)(5, 10, 15)(16, 21, 26)(17, 22, 27)(18, 23, 28)(19, 24, 29)(20, 25, 30)(31, 41, 46)(32, 42, 47)(33, 43, 48)(34, 44, 49)(35, 45, 50)(36, 51, 56)(37, 52, 57)(38, 53, 58)(39, 54, 59)(40, 55, 60)(61, 71, 76)(62, 72, 77)(63, 73, 78)(64, 74, 79)(65, 75, 80)(66, 81, 86)(67, 82, 87)(68, 83, 88)(69, 84, 89)(70, 85, 90)
b: (1, 2, 4, 5, 3)(6, 62, 29, 36, 45)(7, 64, 27, 37, 44)(8, 61, 30, 38, 43)(9, 65, 26, 39, 42)(10, 63, 28, 40, 41)(11, 53, 46, 16, 88)(12, 55, 47, 18, 86)(13, 51, 48, 17, 90)(14, 54, 49, 20, 87)(15, 52, 50, 19, 89)(21, 57, 76, 66, 32)(22, 56, 77, 67, 31)(23, 59, 78, 68, 34)(24, 58, 79, 69, 33)(25, 60, 80, 70, 35)(71, 72, 74, 75, 73)(81, 82, 84, 85, 83)
c: (2, 3)(4, 5)(6, 9)(8, 10)(11, 16)(12, 17)(13, 18)(14, 19)(15, 20)(21, 31)(22, 32)(23, 33)(24, 34)(25, 35)(26, 36)(27, 37)(28, 38)(29, 39)(30, 40)(41, 61)(42, 62)(43, 63)(44, 64)(45, 65)(46, 53)(47, 51)(48, 55)(49, 52)(50, 54)(56, 66)(57, 67)(58, 68)(59, 69)(60, 70)(71, 73)(72, 75)(76, 77)(78, 79)(81, 82)(83, 84)(86, 90)(87, 89)
d: (2, 68)(3, 58)(4, 21)(5, 31)(6, 11)(7, 88)(8, 53)(9, 16)(10, 46)(12, 83)(13, 38)(14, 26)(15, 41)(17, 84)(18, 28)(19, 36)(20, 61)(22, 69)(24, 56)(25, 76)(27, 89)(29, 51)(30, 71)(32, 59)(34, 66)(35, 77)(37, 87)(39, 47)(40, 73)(42, 54)(43, 48)(44, 86)(45, 72)(49, 81)(50, 62)(52, 82)(55, 63)(57, 67)(60, 78)(64, 90)(65, 75)(70, 79)(74, 85)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 90, 7 ]
90
-1 11 16 6 9
-2 88 62 53 65
-3 88 45 46 42
-4 11 46 26 29
-5 36 16 39 53
-6 11 1 14 21
-7 68 58 72 75
-8 68 47 50 31
-9 1 16 19 31
-10 58 51 21 54
-11 1 4 26 6
-12 77 80 38 83
-13 35 83 41 32
-14 24 6 41 21
-15 56 26 59 38
-16 1 36 5 9
-17 80 28 84 76
-18 22 25 61 84
-19 34 61 9 31
-20 66 36 69 28
-21 14 6 51 10
-22 89 61 18 65
-23 89 27 71 30
-24 44 14 71 41
-25 81 18 51 84
-26 11 56 4 15
-27 23 69 71 75
-28 69 17 20 76
-29 46 4 49 76
-30 23 56 89 86
-31 47 8 19 9
-32 45 13 41 87
-33 37 40 73 87
-34 61 73 19 64
-35 13 47 82 83
-36 66 5 16 20
-37 33 59 72 73
-38 77 12 15 59
-39 77 5 52 53
-40 33 66 90 87
-41 13 24 14 32
-42 67 46 3 50
-43 55 67 78 52
-44 78 24 71 74
-45 88 3 32 87
-46 3 4 29 42
-47 35 82 8 31
-48 57 60 82 63
-49 79 29 63 76
-50 67 68 8 42
-51 25 81 10 21
-52 77 78 39 43
-53 2 5 39 62
-54 57 58 62 10
-55 67 70 81 43
-56 15 26 30 86
-57 48 62 63 54
-58 72 7 10 54
-59 15 37 38 72
-60 48 82 85 86
-61 22 34 18 19
-62 2 57 53 54
-63 57 79 48 49
-64 34 79 73 74
-65 22 88 89 2
-66 90 36 40 20
-67 55 50 42 43
-68 50 7 8 75
-69 27 28 20 75
-70 55 90 81 85
-71 44 23 24 27
-72 58 37 59 7
-73 33 34 37 64
-74 44 78 79 64
-75 68 69 27 7
-76 49 17 28 29
-77 12 38 39 52
-78 44 52 74 43
-79 49 63 74 64
-80 12 17 83 84
-81 55 25 70 51
-82 35 47 48 60
-83 12 13 35 80
-84 25 80 17 18
-85 90 70 60 86
-86 56 60 30 85
-87 33 45 40 32
-88 45 2 3 65
-89 22 23 30 65
-90 66 70 40 85
0

**************