C4graphGraph forms for C4 [ 90, 8 ] = UG(ATD[90,12])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 90, 8 ] = UG(ATD[90,12]).

(I) Following is a form readable by MAGMA:

g:=Graph<90|{ {69, 71}, {9, 13}, {64, 69}, {1, 6}, {33, 38}, {17, 22}, {4, 12}, {51, 59}, {16, 25}, {1, 11}, {80, 90}, {17, 27}, {37, 47}, {50, 56}, {2, 9}, {7, 12}, {48, 59}, {66, 73}, {32, 45}, {65, 79}, {19, 28}, {35, 44}, {53, 58}, {3, 19}, {70, 86}, {67, 83}, {45, 61}, {47, 63}, {1, 16}, {69, 84}, {10, 27}, {37, 52}, {39, 53}, {6, 21}, {40, 59}, {42, 57}, {2, 22}, {77, 89}, {11, 31}, {34, 52}, {36, 50}, {44, 58}, {9, 30}, {33, 54}, {12, 20}, {76, 84}, {37, 60}, {64, 89}, {65, 88}, {36, 62}, {66, 88}, {1, 26}, {72, 83}, {3, 24}, {15, 19}, {73, 85}, {5, 27}, {7, 24}, {78, 81}, {16, 48}, {26, 58}, {13, 44}, {2, 32}, {30, 60}, {11, 41}, {6, 36}, {5, 39}, {10, 41}, {29, 62}, {4, 33}, {18, 55}, {17, 54}, {26, 61}, {22, 49}, {7, 47}, {23, 63}, {30, 55}, {2, 40}, {7, 42}, {25, 52}, {14, 32}, {8, 39}, {28, 51}, {24, 55}, {11, 56}, {6, 51}, {30, 43}, {15, 57}, {23, 33}, {29, 42}, {4, 60}, {31, 39}, {21, 45}, {8, 49}, {5, 63}, {20, 46}, {21, 46}, {24, 35}, {5, 57}, {3, 62}, {13, 48}, {10, 52}, {23, 41}, {15, 49}, {15, 78}, {20, 86}, {14, 77}, {21, 81}, {3, 75}, {18, 90}, {25, 80}, {14, 68}, {25, 82}, {8, 68}, {29, 81}, {4, 74}, {9, 70}, {31, 80}, {28, 83}, {12, 67}, {19, 66}, {10, 88}, {28, 79}, {18, 68}, {26, 76}, {16, 71}, {22, 65}, {18, 74}, {20, 76}, {13, 84}, {29, 68}, {23, 76}, {14, 82}, {17, 77}, {31, 66}, {27, 69}, {8, 87}, {38, 70}, {43, 75}, {50, 82}, {58, 90}, {34, 67}, {54, 87}, {55, 85}, {49, 85}, {53, 81}, {44, 73}, {51, 86}, {40, 78}, {46, 72}, {32, 71}, {36, 67}, {40, 64}, {48, 88}, {34, 75}, {38, 79}, {43, 65}, {35, 78}, {46, 64}, {62, 80}, {56, 87}, {59, 75}, {37, 84}, {57, 72}, {60, 77}, {53, 71}, {38, 85}, {42, 89}, {35, 86}, {47, 90}, {63, 73}, {56, 79}, {61, 74}, {50, 74}, {43, 82}, {41, 83}, {45, 87}, {34, 89}, {61, 70}, {54, 72} }>;

(II) A more general form is to represent the graph as the orbit of {69, 71} under the group generated by the following permutations:

a: (2, 3)(4, 5)(6, 16)(7, 17)(8, 18)(9, 19)(10, 20)(11, 26)(12, 27)(13, 28)(14, 29)(15, 30)(21, 25)(22, 24)(31, 61)(32, 62)(33, 63)(34, 64)(35, 65)(36, 71)(37, 72)(38, 73)(39, 74)(40, 75)(41, 76)(42, 77)(43, 78)(44, 79)(45, 80)(46, 52)(47, 54)(48, 51)(49, 55)(50, 53)(56, 58)(57, 60)(66, 70)(67, 69)(81, 82)(83, 84)(86, 88)(87, 90)
b: (1, 2)(3, 4)(6, 9)(8, 10)(11, 22)(12, 24)(13, 21)(14, 25)(15, 23)(16, 32)(17, 31)(18, 34)(19, 33)(20, 35)(26, 40)(27, 39)(28, 38)(29, 37)(30, 36)(41, 49)(42, 47)(43, 50)(44, 46)(45, 48)(51, 70)(52, 68)(53, 69)(54, 66)(55, 67)(56, 65)(57, 63)(58, 64)(59, 61)(60, 62)(72, 73)(74, 75)(76, 78)(77, 80)(81, 84)(83, 85)(87, 88)(89, 90)
c: (1, 6, 21, 46, 64, 89, 77, 60, 30, 55, 85, 73, 66, 31, 11)(2, 7, 22, 47, 65, 90, 79, 58, 28, 53, 83, 71, 67, 32, 12)(3, 8, 23, 48, 62, 87, 76, 59, 29, 54, 84, 75, 68, 33, 13)(4, 9, 24, 49, 63, 88, 80, 56, 26, 51, 81, 72, 69, 34, 14)(5, 10, 25, 50, 61, 86, 78, 57, 27, 52, 82, 74, 70, 35, 15)(16, 36, 45, 20, 40, 42, 17, 37, 43, 18, 38, 44, 19, 39, 41)
d: (2, 4, 3, 5)(6, 11, 16, 26)(7, 15, 17, 30)(8, 14, 18, 29)(9, 12, 19, 27)(10, 13, 20, 28)(21, 56, 25, 58)(22, 60, 24, 57)(23, 59)(31, 71, 61, 36)(32, 74, 62, 39)(33, 75, 63, 40)(34, 73, 64, 38)(35, 72, 65, 37)(41, 48, 76, 51)(42, 49, 77, 55)(43, 47, 78, 54)(44, 46, 79, 52)(45, 50, 80, 53)(66, 69, 70, 67)(81, 87, 82, 90)(83, 88, 84, 86)(85, 89)
e: (2, 43)(3, 78)(4, 54)(5, 47)(7, 57)(8, 18)(9, 65)(10, 84)(11, 26)(12, 72)(13, 88)(15, 24)(17, 60)(19, 35)(20, 83)(21, 36)(22, 30)(25, 71)(27, 37)(28, 86)(31, 58)(32, 82)(34, 64)(39, 90)(40, 75)(41, 76)(44, 66)(45, 50)(46, 67)(49, 55)(52, 69)(53, 80)(56, 61)(62, 81)(70, 79)(74, 87)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 90, 8 ]
90
-1 11 26 16 6
-2 22 40 9 32
-3 24 62 19 75
-4 33 12 60 74
-5 57 27 39 63
-6 1 36 51 21
-7 12 24 47 42
-8 68 49 39 87
-9 2 13 70 30
-10 88 27 41 52
-11 1 56 41 31
-12 67 4 7 20
-13 44 48 84 9
-14 77 68 82 32
-15 78 57 49 19
-16 1 25 48 71
-17 22 77 27 54
-18 55 68 90 74
-19 66 3 15 28
-20 12 46 86 76
-21 45 46 81 6
-22 2 49 17 65
-23 33 41 63 76
-24 55 35 3 7
-25 80 16 82 52
-26 1 58 61 76
-27 69 5 17 10
-28 79 83 51 19
-29 68 81 62 42
-30 55 60 9 43
-31 11 66 80 39
-32 45 2 14 71
-33 23 4 38 54
-34 67 89 52 75
-35 44 78 24 86
-36 67 6 50 62
-37 47 60 84 52
-38 33 79 70 85
-39 5 8 31 53
-40 78 2 59 64
-41 11 23 83 10
-42 89 57 7 29
-43 82 30 75 65
-44 13 35 58 73
-45 61 21 32 87
-46 72 20 64 21
-47 90 37 7 63
-48 88 13 59 16
-49 22 15 8 85
-50 56 36 82 74
-51 59 6 28 86
-52 34 25 37 10
-53 58 81 71 39
-54 33 17 72 87
-55 24 18 30 85
-56 11 79 50 87
-57 15 5 72 42
-58 44 90 26 53
-59 48 40 51 75
-60 77 4 37 30
-61 45 26 70 74
-62 3 36 80 29
-63 23 47 5 73
-64 89 46 69 40
-65 22 88 79 43
-66 88 73 19 31
-67 12 34 36 83
-68 14 18 29 8
-69 27 71 84 64
-70 38 61 9 86
-71 69 16 53 32
-72 46 57 83 54
-73 44 66 63 85
-74 4 50 61 18
-75 34 3 59 43
-76 23 26 84 20
-77 89 14 60 17
-78 35 15 81 40
-79 56 38 28 65
-80 90 25 62 31
-81 78 29 53 21
-82 14 25 50 43
-83 67 28 72 41
-84 13 69 37 76
-85 55 38 49 73
-86 35 70 51 20
-87 45 56 8 54
-88 66 48 10 65
-89 77 34 42 64
-90 47 58 80 18
0

**************