[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 92, 1 ] =
W(46,2).
(I) Following is a form readable by MAGMA:
g:=Graph<92|{ {2, 3}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80,
81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {30,
31}, {28, 29}, {26, 27}, {24, 25}, {22, 23}, {20, 21}, {4, 5}, {6, 7}, {8, 9},
{10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {32, 33}, {34, 35}, {36, 37},
{38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53},
{54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {1, 2}, {89, 90},
{85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {29, 30}, {25, 26},
{21, 22}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {33, 34}, {37, 38}, {41, 42},
{45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {3, 4}, {91, 92}, {83, 84},
{75, 76}, {67, 68}, {27, 28}, {11, 12}, {19, 20}, {35, 36}, {43, 44}, {51, 52},
{59, 60}, {7, 8}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {15, 16},
{79, 80}, {47, 48}, {2, 47}, {16, 61}, {18, 63}, {1, 46}, {16, 63}, {17, 62},
{1, 48}, {3, 50}, {5, 52}, {7, 54}, {9, 56}, {11, 58}, {13, 60}, {15, 62}, {2,
49}, {3, 48}, {6, 53}, {7, 52}, {10, 57}, {11, 56}, {14, 61}, {15, 60}, {4, 49},
{6, 51}, {12, 57}, {14, 59}, {4, 51}, {5, 50}, {12, 59}, {13, 58}, {8, 53}, {10,
55}, {8, 55}, {31, 32}, {9, 54}, {17, 64}, {29, 76}, {27, 74}, {25, 72}, {23,
70}, {21, 68}, {19, 66}, {31, 78}, {18, 65}, {31, 76}, {30, 77}, {27, 72}, {26,
73}, {23, 68}, {22, 69}, {19, 64}, {20, 65}, {30, 75}, {28, 73}, {22, 67}, {20,
67}, {29, 74}, {28, 75}, {21, 66}, {1, 92}, {26, 71}, {24, 69}, {24, 71}, {25,
70}, {32, 77}, {34, 79}, {32, 79}, {33, 78}, {33, 80}, {35, 82}, {37, 84}, {39,
86}, {41, 88}, {43, 90}, {45, 92}, {34, 81}, {35, 80}, {38, 85}, {39, 84}, {42,
89}, {43, 88}, {47, 92}, {36, 81}, {38, 83}, {44, 89}, {46, 91}, {36, 83}, {37,
82}, {44, 91}, {45, 90}, {40, 85}, {42, 87}, {40, 87}, {41, 86}, {63, 64}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (3, 49) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (14, 60)
c: (12, 58)
d: (40, 86)
e: (44, 90)
f: (32, 78)
g: (28, 74)
h: (16, 62)
m: (43, 89)
n1: (37, 83)
a1: (2, 48)
b1: (15, 61)
c1: (41, 87)
d1: (17, 63)
e1: (39, 85)
f1: (30, 76)
g1: (23, 69)
h1: (34, 80)
m1: (33, 79)
n2: (36, 82)
a2: (19, 65)
b2: (24, 70)
c2: (13, 59)
d2: (46, 92)
e2: (25, 71)
f2: (2, 46)(3, 45)(4, 44)(5, 43)(6, 42)(7, 41)(8, 40)(9, 39)(10, 38)(11, 37)(12,
36)(13, 35)(14, 34)(15, 33)(16, 32)(17, 31)(18, 30)(19, 29)(20, 28)(21, 27)(22,
26)(23, 25)(48, 92)(49, 91)(50, 90)(51, 89)(52, 88)(53, 87)(54, 86)(55, 85)(56,
84)(57, 83)(58, 82)(59, 81)(60, 80)(61, 79)(62, 78)(63, 77)(64, 76)(65, 75)(66,
74)(67, 73)(68, 72)(69, 71)
g2: (9, 55)
h2: (18, 64)
m2: (6, 52)
n3: (45, 91)
a3: (21, 67)
b3: (31, 77)
c3: (35, 81)
d3: (26, 72)
e3: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46)(47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92)
f3: (4, 50)
g3: (38, 84)
h3: (29, 75)
m3: (11, 57)
n4: (5, 51)
a4: (10, 56)
b4: (7, 53)
c4: (20, 66)
d4: (42, 88)
e4: (27, 73)
f4: (8, 54)
C4[ 92, 1 ]
92
-1 2 46 48 92
-2 1 3 47 49
-3 2 4 48 50
-4 3 5 49 51
-5 4 6 50 52
-6 5 7 51 53
-7 6 8 52 54
-8 55 7 9 53
-9 56 8 10 54
-10 11 55 57 9
-11 12 56 58 10
-12 11 13 57 59
-13 12 14 58 60
-14 13 15 59 61
-15 14 16 60 62
-16 15 17 61 63
-17 16 18 62 64
-18 17 19 63 65
-19 66 18 20 64
-20 67 19 21 65
-21 22 66 68 20
-22 23 67 69 21
-23 22 24 68 70
-24 23 25 69 71
-25 24 26 70 72
-26 25 27 71 73
-27 26 28 72 74
-28 27 29 73 75
-29 28 30 74 76
-30 77 29 31 75
-31 78 30 32 76
-32 33 77 79 31
-33 34 78 80 32
-34 33 35 79 81
-35 34 36 80 82
-36 35 37 81 83
-37 36 38 82 84
-38 37 39 83 85
-39 38 40 84 86
-40 39 41 85 87
-41 88 40 42 86
-42 89 41 43 87
-43 44 88 90 42
-44 45 89 91 43
-45 44 46 90 92
-46 1 45 47 91
-47 2 46 48 92
-48 1 3 47 49
-49 2 4 48 50
-50 3 5 49 51
-51 4 6 50 52
-52 5 7 51 53
-53 6 8 52 54
-54 55 7 9 53
-55 56 8 10 54
-56 11 55 57 9
-57 12 56 58 10
-58 11 13 57 59
-59 12 14 58 60
-60 13 15 59 61
-61 14 16 60 62
-62 15 17 61 63
-63 16 18 62 64
-64 17 19 63 65
-65 66 18 20 64
-66 67 19 21 65
-67 22 66 68 20
-68 23 67 69 21
-69 22 24 68 70
-70 23 25 69 71
-71 24 26 70 72
-72 25 27 71 73
-73 26 28 72 74
-74 27 29 73 75
-75 28 30 74 76
-76 77 29 31 75
-77 78 30 32 76
-78 33 77 79 31
-79 34 78 80 32
-80 33 35 79 81
-81 34 36 80 82
-82 35 37 81 83
-83 36 38 82 84
-84 37 39 83 85
-85 38 40 84 86
-86 39 41 85 87
-87 88 40 42 86
-88 89 41 43 87
-89 44 88 90 42
-90 45 89 91 43
-91 44 46 90 92
-92 1 45 47 91
0